Citation: Xiaolong Tian, Binbin Hong, Xiaoyi Zhu, Desheng Kong, Yumei Wen, Yanling Wu, Liying Ma, Tianlei Ying. Characterization of human IgM and IgG repertoires in individuals with chronic HIV-1 infection .VIROLOGICA SINICA, 2022, 37(3) : 370-379.  http://dx.doi.org/10.1016/j.virs.2022.02.010

Characterization of human IgM and IgG repertoires in individuals with chronic HIV-1 infection

  • Advancements in high-throughput sequencing (HTS) of antibody repertoires (Ig-Seq) have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale. However, currently, only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions, possibly limited by inadequate sequencing depth and throughput. To better understand how HIV-1 infection would impact humoral immune system, in this study, we systematically analyzed the differences between the IgM (HIV-IgM) and IgG (HIV-IgG) heavy chain repertoires of HIV-1 infected patients, as well as between antibody repertoires of HIV-1 patients and healthy donors (HH). Notably, the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries, and the diversity of unique clones in HIV-IgG remarkably reduced. In aspect of somatic mutation rates of CDR1 and CDR2, the HIV-IgG repertoire was higher than HIV-IgM. Besides, the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire, presumably caused by the great number of novel VDJ rearrangement patterns, especially a massive use of IGHJ6. Moreover, some of the B cell clonotypes had numerous clones, and somatic variants were detected within the clonotype lineage in HIV-IgG, indicating HIV-1 neutralizing activities. The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies.

  • 加载中
    1. Bonsignori, M., Zhou, T., Sheng, Z., Chen, L., Gao, F., Joyce, M.G., Ozorowski, G., Chuang, G.Y., Schramm, C.A., Wiehe, K., Alam, S.M., Bradley, T., Gladden, M.A., Hwang, K.K., Iyengar, S., Kumar, A., Lu, X., Luo, K., Mangiapani, M.C., Parks, R.J., Song, H., Acharya, P., Bailer, R.T., Cao, A., Druz, A., Georgiev, I.S., Kwon, Y.D., Louder, M.K., Zhang, B., Zheng, A., Hill, B.J., Kong, R., Soto, C., Mullikin, J.C., Douek, D.C., Montefiori, D.C., Moody, M.A., Shaw, G.M., Hahn, B.H., Kelsoe, G., Hraber, P.T., Korber, B.T., Boyd, S.D., Fire, A.Z., Kepler, T.B., Shapiro, L., Ward, A.B., Mascola, J.R., Liao, H.X., Kwong, P.D., Haynes, B.F., 2016. Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165, 449-463.

    2. Bowers, E., Scamurra, R.W., Asrani, A., Beniguel, L., MaWhinney, S., Keays, K.M., Thurn, J.R., Janoff, E.N., 2014. Decreased mutation frequencies among immunoglobulin G variable region genes during viremic HIV-1 infection. PLoS One 9, e81913.

    3. Brenchley, J.M., Price, D.A., Douek, D.C., 2006. HIV disease:fallout from a mucosal catastrophe? Nat. Immunol. 7, 235-239.

    4. Chen, W., Prabakaran, P., Zhu, Z., Feng, Y., Streaker, E.D., Dimitrov, D.S., 2012.Characterization of human IgG repertoires in an acute HIV-1 infection. Exp. Mol.Pathol. 93, 399-407.

    5. Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., Chi, L., Chen, H., Zhai, S., Sun, Y., Lan, L., Zhang, X., Xiao, J., Bao, Y., Wang, Y., Zhang, Z., Zhao, W., 2021. The genome sequence archive family:toward explosive data growth and diverse data types. Dev. Reprod. Biol. S16720229, 163-167.

    6. Chothia, C., Lesk, A.M., 1987. Canonical structures for the hypervariable regions of immunoglobulins. J. M. Biol. 196, 901-917.

    7. Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., 1989. Conformations of immunoglobulin hypervariable regions. Nature 342, 877-883.

    8. Chu, Y.W., Marin, E., Fuleihan, R., Ramesh, N., Rosen, F.S., Geha, R.S., Insel, R.A., 1995.Somatic mutation of human immunoglobulin V genes in the X-linked HyperIgM syndrome. J. Clin. Invest. 95, 1389-1393.

    9. Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences. Academic press.

    10. Davis, M.M., Lyons, D.S., Altman, J.D., McHeyzer-Williams, M., Hampl, J., Boniface, J.J., Chien, Y., Nossal, Zinkernagel, Kirberg, 1997. T Cell Receptor Biochemistry, Repertoire Selection And General Features Of Tcr And Ig Structure, pp. 94-100.

    11. De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., Muyldermans, S., Wyns, L., 2006. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. U.S.A. 103, 4586-4591.

    12. de los Rios, M., Criscitiello, M.F., Smider, V.V., 2015. Structural and genetic diversity in antibody repertoires from diverse species. Curr. Opin. Struct. Biol. 33, 27-41.

    13. De Muth, J.E., 2014. Basic Statistics and Pharmaceutical Statistical Applications. CRC Press.

    14. DeKosky, B.J., Ippolito, G.C., Deschner, R.P., Lavinder, J.J., Wine, Y., Rawlings, B.M., Varadarajan, N., Giesecke, C., Dorner, T., Andrews, S.F., Wilson, P.C., Hunicke-Smith, S.P., Willson, C.G., Ellington, A.D., Georgiou, G., 2013. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire.Nat. Biotechnol. 31, 166-169.

    15. Desmyter, A., Transue, T.R., Ghahroudi, M.A., Thi, M.-H.D., Poortmans, F., Hamers, R., Muyldermans, S., Wyns, L., 1996. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. 3, 803.

    16. Doria-Rose, N.A., Schramm, C.A., Gorman, J., Moore, P.L., Bhiman, J.N., DeKosky, B.J., Ernandes, M.J., Georgiev, I.S., Kim, H.J., Pancera, M., Staupe, R.P., Altae-Tran, H.R., Bailer, R.T., Crooks, E.T., Cupo, A., Druz, A., Garrett, N.J., Hoi, K.H., Kong, R., Louder, M.K., Longo, N.S., McKee, K., Nonyane, M., O'Dell, S., Roark, R.S., Rudicell, R.S., Schmidt, S.D., Sheward, D.J., Soto, C., Wibmer, C.K., Yang, Y., Zhang, Z., Mullikin, J.C., Binley, J.M., Sanders, R.W., Wilson, I.A., Moore, J.P., Ward, A.B., Georgiou, G., Williamson, C., Abdool Karim, S.S., Morris, L., Kwong, P.D., Shapiro, L., Mascola, J.R., 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509, 55-62.

    17. D'Angelo, S., Ferrara, F., Naranjo, L., Erasmus, M.F., Hraber, P., Bradbury, A.R.M., 2018.Many routes to an antibody heavy-chain CDR3:necessary, yet insufficient, for specific binding. Front. Immunol. 9, 395.

    18. Ehrenmann, F., Giudicelli, V., Duroux, P., Lefranc, M.-P., 2011. IMGT/Collier de perles:IMGT standardized representation of domains (IG, TR, and IgSF cariable and constant domains, MH and MhSF groove domains). Cold Spring Harb. Protoc. 726-736, 2011.

    19. Galson, J.D., Pollard, A.J., Trück, J., Kelly, D.F., 2014. Studying the antibody repertoire after vaccination:practical applications. Trends Immunol. 35, 319-331.

    20. Geisberger, R., Lamers, M., Achatz, G., 2006. The riddle of the dual expression of IgM and IgD. Immunology 118, 429-437.

    21. Goding, J.W., 1978. Allotypes of IgM and IgD receptors in the mouse:a probe for lymphocyte differentiation. In:Contemporary Topics in Immunobiology. Springer, pp. 203-243.

    22. Hoehn, K.B., Gall, A., Bashford-Rogers, R., Fidler, S.J., Kaye, S., Weber, J.N., McClure, M.O.,, SPARTAC Trial Investigators, Kellam, P., Pybus, O.G., 2015.Dynamics of immunoglobulin sequence diversity in HIV-1 infected individuals. Phil.Trans. R. Soc. B. 370, 20140241.

    23. Hoet, R.M., Cohen, E.H., Kent, R.B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., van Hegelsom, R., Neer, N.C., Nastri, H.G., Rondon, I.J., Leeds, J.A., Hufton, S.E., Huang, L., Kashin, I., Devlin, M., Kuang, G., Steukers, M., Viswanathan, M., Nixon, A.E., Sexton, D.J., Hoogenboom, H.R., Ladner, R.C., 2005. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat.Biotechnol. 23, 344-348.

    24. Hong, B., Wu, Y., Li, W., Wang, X., Wen, Y., Jiang, S., Dimitrov, D.S., Ying, T., 2018. Indepth analysis of human neonatal and adult IgM antibody repertoires. Front.Immunol. 9, 128.

    25. Hu, X., Zhang, J., Wang, J., Fu, J., Li, T., Zheng, X., Wang, B., Gu, S., Jiang, P., Fan, J., Ying, X., Zhang, J., Carroll, M.C., Wucherpfennig, K.W., Hacohen, N., Zhang, F., Zhang, P., Liu, J.S., Li, B., Liu, X.S., 2019. Landscape of B cell immunity and related immune evasion in human cancers. Nat. Genet. 51, 560-567.

    26. Imkeller, K., Wardemann, H., 2018. Assessing human B cell repertoire diversity and convergence. Immunol. Rev. 284, 51-66.

    27. Jackson, K.J.L., Wang, Y., Collins, A.M., 2014. Human immunoglobulin classes and subclasses show variability in VDJ gene mutation levels. Immunol. Cell Biol. 92, 729-733.

    28. Jacobson, M.A., Khayam-Bashi, H., Martin, J.N., Black, D., Ng, V., 2002. Effect of longterm highly active antiretroviral therapy in restoring HIV-induced abnormal Blymphocyte function. J. Acquir. Immune Defic. Syndr. 31, 472-477, 1999.

    29. Janeway Jr., C.A., Travers, P., Walport, M., Shlomchik, M.J., 2001. The generation of diversity in immunoglobulins. In:Immunobiology:the Immune System in Health and Disease, fifth ed. Garland Science.

    30. Jiang, N., He, J., Weinstein, J.A., Penland, L., Sasaki, S., He, X.-S., Dekker, C.L., Zheng, N.-Y., Huang, M., Sullivan, M., Wilson, P.C., Greenberg, H.B., Davis, M.M., Fisher, D.S., Quake, S.R., 2013. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl. Med. 5, 171ra19.

    31. Khurana, S., Fuentes, S., Coyle, E.M., Ravichandran, S., Davey, R.T., Beigel, J.H., 2016.Human antibody repertoire after VSV-Ebola vaccination identifies novel targets and virus-neutralizing IgM antibodies. Nat. Med. 22, 1439-1447.

    32. Kitaura, K., Yamashita, H., Ayabe, H., Shini, T., Matsutani, T., Suzuki, R., 2017. Different somatic hypermutation levels among antibody subclasses disclosed by a new nextgeneration sequencing-based antibody repertoire analysis. Front. Immunol. 8, 389.

    33. Kreer, C., Gruell, H., Mora, T., Walczak, A.M., Klein, F., 2020. Exploiting B cell receptor analyses to inform on HIV-1 vaccination strategies. Vaccines 8, 13.

    34. Larimore, K., McCormick, M.W., Robins, H.S., Greenberg, P.D., 2012. Shaping of human germline IgH repertoires revealed by deep sequencing. J. Immunol. 189, 3221-3230.

    35. Laserson, U., Vigneault, F., Gadala-Maria, D., Yaari, G., Uduman, M., Vander Heiden, J.A., Kelton, W., Taek Jung, S., Liu, Y., Laserson, J., Chari, R., Lee, J.-H., Bachelet, I., Hickey, B., Lieberman-Aiden, E., Hanczaruk, B., Simen, B.B., Egholm, M., Koller, D., Georgiou, G., Kleinstein, S.H., Church, G.M., 2014. High-resolution antibody dynamics of vaccine-induced immune responses. Proc. Natl. Acad. Sci. U.S.A. 111, 4928-4933.

    36. LeBien, T.W., Tedder, T.F., 2008. B lymphocytes:how they develop and function. Blood 112, 1570-1580.

    37. Li, Z., Woo, C.J., Iglesias-Ussel, M.D., Ronai, D., Scharff, M.D., 2004. The generation of antibody diversity through somatic hypermutation and class switch recombination.Genes Dev. 18, 1-11.

    38. Liao, H.-X., Lynch, R., Zhou, T., Gao, F., Alam, S.M., Boyd, S.D., Fire, A.Z., Roskin, K.M., Schramm, C.A., Zhang, Z., Zhu, J., Shapiro, L., Mullikin, J.C., Gnanakaran, S., Hraber, P., Wiehe, K., Kelsoe, G., Yang, G., Xia, S.-M., Montefiori, D.C., Parks, R., Lloyd, K.E., Scearce, R.M., Soderberg, K.A., Cohen, M., Kamanga, G., Louder, M.K., Tran, L.M., Chen, Y., Cai, F., Chen, S., Moquin, S., Du, X., Joyce, M.G., Srivatsan, S., Zhang, B., Zheng, A., Shaw, G.M., Hahn, B.H., Kepler, T.B., Korber, B.T.M., Kwong, P.D., Mascola, J.R., Haynes, B.F., 2013. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469-476.

    39. MacLeod, D.T., Choi, N.M., Briney, B., Garces, F., Ver, L.S., Landais, E., Murrell, B., Wrin, T., Kilembe, W., Liang, C.-H., Ramos, A., Bian, C.B., Wickramasinghe, L., Kong, L., Eren, K., Wu, C.-Y., Wong, C.-H., Kosakovsky Pond, S.L., Wilson, I.A., Burton, D.R., Poignard, P., Price, M.A., Gilmour, J., Fast, P., Kamali, A., Sanders, E.J., Anzala, O., Allen, S., Hunter, E., Karita, E., Kilembe, W., Lakhi, S., Inambao, M., Edward, V., Bekker, L.-G., 2016. Early antibody lineage diversification and independent limb maturation lead to broad HIV-1 neutralization targeting the env high-mannose patch. Immunity 44, 1215-1226.

    40. Reddy, S.T., Ge, X., Miklos, A.E., Hughes, R.A., Kang, S.H., Hoi, K.H., Chrysostomou, C., HunickeSmith, S.P., Iverson, B.L., Tucker, P.W., Ellington, A.D., Georgiou, G., 2010. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat. Biotechnol. 28, 965-969.

    41. Safonova, Y., Pevzner, P.A., 2019. De novo inference of diversity genes and analysis of non-canonical V(DD)J recombination in immunoglobulins. Front. Immunol. 10, 987.

    42. Sajadi, M.M., Dashti, A., Rikhtegaran Tehrani, Z., Tolbert, W.D., Seaman, M.S., Ouyang, X., Gohain, N., Pazgier, M., Kim, D., Cavet, G., Yared, J., Redfield, R.R., Lewis, G.K., DeVico, A.L., 2018. Identification of near-pan-neutralizing antibodies against HIV-1 by deconvolution of plasma humoral responses. Cell 173, 1783-1795e14.

    43. Saragovi, H.U., Fitzpatrick, D., Raktabutr, A., Nakanishi, H., Kahn, M., Greene, M.I., 1991.Design and synthesis of a mimetic from an antibody complementarity-deterinLing region. Science 253, 792-795.

    44. Scamurra, R.W., Miller, D.J., Dahl, L., Abrahamsen, M., Kapur, V., Wahl, S.M., Milner, E.C.B., Janoff, E.N., 2000. Impact of HIV-1 Infection on VH3 gene repertoire of naive human B cells. J. Immunol. 164, 5482-5491.

    45. Setliff, I., McDonnell, W.J., Raju, N., Bombardi, R.G., Murji, A.A., Scheepers, C., Ziki, R., Mynhardt, C., Shepherd, B.E., Mamchak, A.A., Garrett, N., Karim, S.A., Mallal, S.A., Crowe, J.E., Morris, L., Georgiev, I.S., 2018. Multi-donor longitudinal antibody repertoire sequencing reveals the existence of public antibody clonotypes in HIV-1 infection. Cell Host Microbe 23, 845-854 e6.

    46. Smith, K.M., Pottage, L., Thomas, E.R., Leishman, A.J., Doig, T.N., Xu, D., Liew, F.Y., Garside, P., 2000. Th1 and Th2 CD4+ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J. Immunol. 165, 3136-3144.

    47. Soto, C., Bombardi, R.G., Branchizio, A., Kose, N., Matta, P., Sevy, A.M., Sinkovits, R.S., Gilchuk, P., Finn, J.A., Crowe, J.E., 2019. High frequency of shared clonotypes in human B cell receptor repertoires. Nature 566, 398-402.

    48. Stavnezer, J., Guikema, J.E.J., Schrader, C.E., 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261-292.

    49. Tan, J., Pieper, K., Piccoli, L., Abdi, A., Foglierini, M., Geiger, R., Maria Tully, C., Jarrossay, D., Maina Ndungu, F., Wambua, J., Bejon, P., Silacci Fregni, C., FernandezRodriguez, B., Barbieri, S., Bianchi, S., Marsh, K., Thathy, V., Corti, D., Sallusto, F., Bull, P., Lanzavecchia, A., 2016. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 529, 105-109.

    50. Tian, X., Li, C., Wu, Y., Ying, T., 2020. Deep mining of human antibody repertoires:concepts, methodologies, and applications. Small Methods 4, 2000451.

    51. Turchaninova, M.A., Davydov, A., Britanova, O.V., Shugay, M., Bikos, V., Egorov, E.S., Kirgizova, V.I., Merzlyak, E.M., Staroverov, D.B., Bolotin, D.A., Mamedov, I.Z., Izraelson, M., Logacheva, M.D., Kladova, O., Plevova, K., Pospisilova, S., Chudakov, D.M., 2016. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat. Protoc. 11, 1599-1616.

    52. Walker, L.M., Huber, M., Doores, K.J., Falkowska, E., Pejchal, R., Julien, J.-P., Wang, S.-K., Ramos, A., Chan-Hui, P.-Y., Moyle, M., Mitcham, J.L., Hammond, P.W., Olsen, O.A., Phung, P., Fling, S., Wong, C.-H., Phogat, S., Wrin, T., Simek, M.D., Principal Investigators, P.G., Koff, W.C., Wilson, I.A., Burton, D.R., Poignard, P., 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies.Nature 477, 466-470.

    53. Wang, B., DeKosky, B.J., Timm, M.R., Lee, J., Normandin, E., Misasi, J., Kong, R., McDaniel, J.R., Delidakis, G., Leigh, K.E., Niezold, T., Choi, C.W., Viox, E.G., Fahad, A., Cagigi, A., Ploquin, A., Leung, K., Yang, E.S., Kong, W.-P., Voss, W.N., Schmidt, A.G., Moody, M.A., Ambrozak, D.R., Henry, A.R., Laboune, F., Ledgerwood, J.E., Graham, B.S., Connors, M., Douek, D.C., Sullivan, N.J., Ellington, A.D., Mascola, J.R., Georgiou, G., 2018. Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nat. Biotechnol. 36, 152-155.

    54. Weinstein, J.A., Jiang, N., White, R.A., Fisher, D.S., Quake, S.R., 2009. High-throughput sequencing of the zebrafish antibody repertoire. Science 324, 807-810.

    55. Wu, Y.-C., Kipling, D., Leong, H.S., Martin, V., Ademokun, A.A., Dunn-Walters, D.K., 2010. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070-1078.

    56. Wu, Y.-C.B., Kipling, D., Dunn-Walters, D.K., 2012. Age-related changes in human peripheral blood IGH repertoire following vaccination. Front. Immunol. 3, 193.

    57. Xu, J.L., Davis, M.M., 2000. Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity 13, 37-45.

    58. Yin, L., Hou, W., Liu, L., Cai, Y., Wallet, M., Gardner, B., Chang, K., Lowe, A., Rodriguez, C., Sriaroon, P., Farmerie, W., Sleasman, J., Goodenow, M., 2013. IgM repertoire biodiversity is reduced in HIV-1 infection and systemic lupus erythematosus. Front. Immunol. 4, 373.

    59. Zhu, J., Paul, W.E., 2008. CD4 T cells:fates, functions, and faults. Blood 112, 1557-1569.

    60. Zhu, J., O'Dell, S., Ofek, G., Pancera, M., Wu, X., Zhang, B., Zhang, Z., 2012. Somatic populations of PGT135-137 HIV-1-neutralizing antibodies identified by 454 pyrosequencing and bioinformatics. Front. Microbiol. 3, 315.

    61. Zwick, M.B., Komori, H.K., Stanfield, R.L., Church, S., Wang, M., Parren, P.W.H.I., Kunert, R., Katinger, H., Wilson, I.A., Burton, D.R., 2004. The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5. J. Virol. 78, 3155-3161.

  • 加载中

Article Metrics

Article views(5813) PDF downloads(18) Cited by()

Related
Proportional views

    Characterization of human IgM and IgG repertoires in individuals with chronic HIV-1 infection

      Corresponding author: Binbin Hong, bbh.0329@163.com
      Corresponding author: Liying Ma, mal@chinaaids.cn
      Corresponding author: Tianlei Ying, tlying@fudan.edu.cn
    • a MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China;
    • b Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China;
    • c State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China;
    • d Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, China;
    • e Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China

    Abstract: Advancements in high-throughput sequencing (HTS) of antibody repertoires (Ig-Seq) have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale. However, currently, only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions, possibly limited by inadequate sequencing depth and throughput. To better understand how HIV-1 infection would impact humoral immune system, in this study, we systematically analyzed the differences between the IgM (HIV-IgM) and IgG (HIV-IgG) heavy chain repertoires of HIV-1 infected patients, as well as between antibody repertoires of HIV-1 patients and healthy donors (HH). Notably, the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries, and the diversity of unique clones in HIV-IgG remarkably reduced. In aspect of somatic mutation rates of CDR1 and CDR2, the HIV-IgG repertoire was higher than HIV-IgM. Besides, the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire, presumably caused by the great number of novel VDJ rearrangement patterns, especially a massive use of IGHJ6. Moreover, some of the B cell clonotypes had numerous clones, and somatic variants were detected within the clonotype lineage in HIV-IgG, indicating HIV-1 neutralizing activities. The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies.

    Reference (61) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return