Citation: Xiaojie Zheng, Shengming Nie, Wen-Hai Feng. Regulation of antiviral immune response by African swine fever virus (ASFV) .VIROLOGICA SINICA, 2022, 37(2) : 157-167.  http://dx.doi.org/10.1016/j.virs.2022.03.006

Regulation of antiviral immune response by African swine fever virus (ASFV)

  • Corresponding author: Wen-Hai Feng, whfeng@cau.edu.cn
  • Received Date: 07 December 2021
    Accepted Date: 07 March 2022
    Available online: 09 March 2022
  • African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality approaching 100% in domestic pigs. ASF is an endemic in countries in sub-Saharan Africa. Now, it has been spreading to many countries, especially in Asia and Europe. Due to the fact that there is no commercial vaccine available for ASF to provide sustainable prevention, the disease has spread rapidly worldwide and caused great economic losses in swine industry. The knowledge gap of ASF virus (ASFV) pathogenesis and immune evasion is the main factor to limit the development of safe and effective ASF vaccines. Here, we will summarize the molecular mechanisms of how ASFV interferes with the host innate and adaptive immune responses. An in-depth understanding of ASFV immune evasion strategies will provide us with rational design of ASF vaccines.

  • 加载中
    1. Aarreberg, L.D., Wilkins, C., Ramos, H.J., Green, R., Davis, M.A., Chow, K., Gale Jr., M., 2018. Interleukin-1beta signaling in dendritic cells induces antiviral interferon responses. mBio 9, e00342-18.

    2. Afonso, C.L., Neilan, J.G., Kutish, G.F., Rock, D.L., 1996. An African swine fever virus Bc1-2 homolog, 5-HL, suppresses apoptotic cell death. J. Virol. 70, 4858-4863.

    3. Afonso, C.L., Zsak, L., Carrillo, C., Borca, M.V., Rock, D.L., 1998. African swine fever virus NL gene is not required for virus virulence. J. Gen. Virol. 79, 2543-2547.

    4. Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L., Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 78, 1858-1864.

    5. Alejo, A., Andr es, G., Salas, M.L., 2003. African Swine Fever virus proteinase is essential for core maturation and infectivity. J. Virol. 77, 5571-5577.

    6. Alejo, A., Matamoros, T., Guerra, M., Andres, G., 2018. A proteomic Atlas of the African swine fever virus particle. J. Virol. 92, 1-18.

    7. Alfonso, P., Quetglas, J.I., Escribano, J.M., Alonso, C., 2007. Protein pE120R of African swine fever virus is post-translationally acetylated as revealed by post-source decay MALDI mass spectrometry. Virus Gene. 35, 81-85.

    8. Alonso, C., Miskin, J., Hernaez, B., Fernandez-Zapatero, P., Soto, L., Canto, C., RodriguezCrespo, I., Dixon, L., Escribano, J.M., 2001. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J. Virol. 75, 9819-9827.

    9. Andres, G., Garcia-Escudero, R., Vinuela, E., Salas, M.L., Rodriguez, J.M., 2001. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. J. Virol. 75, 6758-6768.

    10. Andrés, G., Alejo, A., Simón-Mateo, C., Salas, M.L., 2001. African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J. Biol. Chem. 276, 780-787.

    11. Andrés, G., Alejo, A., Salas, J., Salas, M.L., 2002. African swine fever virus polyproteins pp220 and pp62 assemble into the core shell. J. Virol. 76, 12473-12482.

    12. Banjara, S., Caria, S., Dixon, L.K., Hinds, M.G., Kvansakul, M., 2017. Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis. J. Virol. 91 e02228-16.

    13. Barrado-Gil, L., Del Puerto, A., Munoz-Moreno, R., Galindo, I., Cuesta-Geijo, M.A., Urquiza, J., Nistal-Villan, E., Maluquer de Motes, C., Alonso, C., 2020. African swine fever virus ubiquitin-conjugating enzyme interacts with host translation machinery to regulate the host protein synthesis. Front. Microbiol. 11, 622907.

    14. Beaudet, D., Pham, N., Skaik, N., Piekny, A., 2020. Importin binding mediates the intramolecular regulation of anillin during cytokinesis. Mol. Biol. Cell 31, 1124-1139.

    15. Borca, M.V., Carrillo, C., Zsak, L., Laegreid, W.W., Kutish, G.F., Neilan, J.G., Burrage, T.G., Rock, D.L., 1998. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J. Virol. 72, 2881-2889.

    16. Borca, M.V., O'Donnell, V., Holinka, L.G., Ramirez-Medina, E., Clark, B.A., Vuono, E.A., Berggren, K., Alfano, M., Carey, L.B., Richt, J.A., Risatti, G.R., Gladue, D.P., 2018. The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1beta. Virus Res. 249, 116-123.

    17. Broz, P., Dixit, V.M., 2016. Inflammasomes:mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407-420.

    18. Brun, A., Rodriguez, F., Escribano, J.M., Alonso, C., 1998. Functionality and cell anchorage dependence of the African swine fever virus gene A179L, a viral bcl-2 homolog, in insect cells. J. Virol. 72, 10227-10233.

    19. Brun, A., Rivas, C., Esteban, M., Escribano, J.M., Alonso, C., 1996. African swine fever virus gene A179L, a viral homologue of bcl-2, protects cells from programmed cell death. Virology 225, 227-230.

    20. Brush, M.H., Weiser, D.C., Shenolikar, S., 2003. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol. Cell Biol. 23, 1292-1303.

    21. Bulimo, W.D., Miskin, J.E., Dixon, L.K., 2000. An ARID family protein binds to the African swine fever virus encoded ubiquitin conjugating enzyme. UBCv1. FEBS Lett. 471, 17-22.

    22. Chen, S., Zhang, X., Nie, Y., Li, H., Chen, W., Lin, W., Chen, F., Xie, Q., 2021. African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2. Virol. Sin. 36, 196-206.

    23. Chen, X., He, W.T., Hu, L., Li, J., Fang, Y., Wang, X., Xu, X., Wang, Z., Huang, K., Han, J., 2016. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007-1020.

    24. Chen, Y., Lin, J.S., 2017. The application of aptamer in apoptosis. Biochimie 132, 1-8.

    25. Cheng, G., Yang, K., He, B., 2003. Dephosphorylation of eIF-2alpha mediated by the gamma(1)34.5 protein of herpes simplex virus type 1 is required for viral response to interferon but is not sufficient for efficient viral replication. J. Virol. 77, 10154-10161.

    26. Cobbold, C., Brookes, S.M., Wileman, T., 2000. Biochemical requirements of virus wrapping by the endoplasmic reticulum:involvement of ATP and endoplasmic reticulum calcium store during envelopment of African swine fever virus. J. Virol. 74, 2151-2160.

    27. Correia, S., Ventura, S., Parkhouse, R.M., 2013. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res. 173, 87-100.

    28. D'Arcy, M.S., 2019. Cell death:a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 43, 582-592.

    29. de Oliveira, V.L., Almeida, S.C., Soares, H.R., Crespo, A., Marshall-Clarke, S., Parkhouse, R.M., 2011. A novel TLR3 inhibitor encoded by African swine fever virus(ASFV). Arch. Virol. 156, 597-609.

    30. Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., Sun, H., Wang, D.C., Shao, F., 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111-116.

    31. Dixon, L.K., Sun, H., Roberts, H., 2019. African swine fever. Antivir. Res. 165, 34-41.

    32. Dixon, L.K., Chapman, D.A., Netherton, C.L., Upton, C., 2013. African swine fever virus replication and genomics. Virus Res. 173, 3-14.

    33. Dixon, L.K., Sanchez-Cordon, P.J., Galindo, I., Alonso, C., 2017. Investigations of pro- and anti-apoptotic factors affecting African swine fever virus replication and pathogenesis. Viruses 9, 1-15.

    34. Dixon, L.K., Abrams, C.C., Bowick, G., Goatley, L.C., Kay-Jackson, P.C., Chapman, D., Liverani, E., Nix, R., Silk, R., Zhang, F., 2004. African swine fever virus proteins involved in evading host defence systems. Vet. Immunol. Immunopathol. 100, 117-134.

    35. Fan, L., 2019. Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection. Virus Gene. 55, 433-439.

    36. Fishbourne, E., Abrams, C.C., Takamatsu, H.H., Dixon, L.K., 2013. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Vet. Microbiol. 162, 937-943.

    37. Frank, D., Vince, J.E., 2019. Pyroptosis versus necroptosis:similarities, differences, and crosstalk. Cell Death Differ. 26, 99-114.

    38. Franzoni, G., Dei Giudici, S., Oggiano, A., 2018. Infection, modulation and responses of antigen-presenting cells to African swine fever viruses. Virus Res. 258, 73-80.

    39. Freitas, F.B., Frouco, G., Martins, C., Ferreira, F., 2018. African swine fever virus encodes for an E2-ubiquitin conjugating enzyme that is mono- and di-ubiquitinated and required for viral replication cycle. Sci. Rep. 8, 3471.

    40. Galindo, I., Almazan, F., Bustos, M.J., Vinuela, E., Carrascosa, A.L., 2000. African swine fever virus EP153R open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology 266, 340-351.

    41. Galindo, I., Hernaez, B., Diaz-Gil, G., Escribano, J.M., Alonso, C., 2008. A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 375, 561-572.

    42. Gallardo, C., Sanchez, E.G., Perez-Nunez, D., Nogal, M., de Leon, P., Carrascosa, A.L., Nieto, R., Soler, A., Arias, M.L., Revilla, Y., 2018. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine 36, 2694-2704.

    43. Garcia-Belmonte, R., Perez-Nunez, D., Pittau, M., Richt, J.A., Revilla, Y., 2019. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. J. Virol. 93 e02298-18.

    44. Gil, S., Sepulveda, N., Albina, E., Leitao, A., Martins, C., 2008. The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNalpha, TNFalpha and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. Arch. Virol. 153, 1845-1854.

    45. Gomez-Puertas, P., Rodriguez, F., Oviedo, J.M., Brun, A., Alonso, C., Escribano, J.M., 1998. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243, 461-471.

    46. Granja, A.G., Sabina, P., Salas, M.L., Fresno, M., Revilla, Y., 2006a. Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. J. Virol. 80, 10487-10496.

    47. Granja, A.G., Nogal, M.L., Hurtado, C., Vila, V., Carrascosa, A.L., Salas, M.L., Fresno, M., Revilla, Y., 2004. The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway. J. Biol. Chem. 279, 53736-53746.

    48. Granja, A.G., Nogal, M.L., Hurtado, C., Del Aguila, C., Carrascosa, A.L., Salas, M.L., Fresno, M., Revilla, Y., 2006b. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway. J. Immunol. 176, 451-462.

    49. Harding, H.P., Zhang, Y., Ron, D., 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274.

    50. Henriques, E.S., Brito, R.M., Soares, H., Ventura, S., de Oliveira, V.L., Parkhouse, R.M., 2011. Modeling of the Toll-like receptor 3 and a putative Toll-like receptor 3 antagonist encoded by the African swine fever virus. Protein Sci. 20, 247-255.

    51. Hernaez, B., Guerra, M., Salas, M.L., Andres, G., 2016. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLoS Pathog. 12, e1005595.

    52. Hernaez, B., Cabezas, M., Munoz-Moreno, R., Galindo, I., Cuesta-Geijo, M.A., Alonso, C., 2013. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr. Mol. Med. 13, 305-316.

    53. Hernaez, B., Diaz-Gil, G., Garcia-Gallo, M., Ignacio Quetglas, J., Rodriguez-Crespo, I., Dixon, L., Escribano, J.M., Alonso, C., 2004. The African swine fever virus dyneinbinding protein p54 induces infected cell apoptosis. FEBS Lett. 569, 224-228.

    54. Hingamp, P.M., Arnold, J.E., Mayer, R.J., Dixon, L.K., 1992. A ubiquitin conjugating enzyme encoded by African swine fever virus. EMBO J. 11, 361-366.

    55. Hingamp, P.M., Leyland, M.L., Webb, J., Twigger, S., Mayer, R.J., Dixon, L.K., 1995. Characterization of a ubiquitinated protein which is externally located in African swine fever virions. J. Virol. 69, 1785-1793.

    56. Hogan, P.G., 2017. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 63, 66-69.

    57. Huang, L., Xu, W., Liu, H., Xue, M., Liu, X., Zhang, K., Hu, L., Li, J., Liu, X., Xiang, Z., Zheng, J., Li, C., Chen, W., Bu, Z., Xiong, T., Weng, C., 2021. African swine fever virus pI215L negatively regulates cGAS-STING signaling pathway through recruiting RNF138 to inhibit K63-linked ubiquitination of TBK1. J. Immunol. 207, 2754-2769.

    58. Hurtado, C., Granja, A.G., Bustos, M.J., Nogal, M.L., Gonzalez de Buitrago, G., de Yebenes, V.G., Salas, M.L., Revilla, Y., Carrascosa, A.L., 2004. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology 326, 160-170.

    59. Hurtado, C., Bustos, M.J., Granja, A.G., de Leon, P., Sabina, P., Lopez-Vinas, E., GomezPuertas, P., Revilla, Y., Carrascosa, A.L., 2011. The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens. Arch. Virol. 156, 219-234.

    60. Iglesias, I., Rodriguez, A., Feliziani, F., Rolesu, S., de la Torre, A., 2017. Spatio-temporal analysis of African swine fever in Sardinia (2012-2014):trends in domestic pigs and wild boar. Transbound. Emerg. Dis. 64, 656-662.

    61. Karalyan, Z., Voskanyan, H., Ter-Pogossyan, Z., Saroyan, D., Karalova, E., 2016. IL-23/IL-17/G-CSF pathway is associated with granulocyte recruitment to the lung during African swine fever. Vet. Immunol. Immunopathol. 179, 58-62.

    62. Karalyan, Z., Avetisyan, A., Avagyan, H., Ghazaryan, H., Vardanyan, T., Manukyan, A., Semerjyan, A., Voskanyan, H., 2019. Presence and survival of African swine fever virus in leeches. Vet. Microbiol. 237, 108421.

    63. Kay-Jackson, P.C., Goatley, L.C., Cox, L., Miskin, J.E., Parkhouse, R.M.E., Wienands, J., Dixon, L.K., 2004. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J. Gen. Virol. 85, 119-130.

    64. Kesavardhana, S., Malireddi, R.K.S., Kanneganti, T.D., 2020. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 38, 567-595.

    65. Krishnamoorthy, T., Pavitt, G.D., Zhang, F., Dever, T.E., Hinnebusch, A.G., 2001. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol. Cell Biol. 21, 5018-5030.

    66. Li, D., Zhang, J., Yang, W., Li, P., Ru, Y., Kang, W., Li, L., Ran, Y., Zheng, H., 2021a. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. J. Biol. Chem. 297, 101190.

    67. Li, D., Yang, W., Li, L., Li, P., Ma, Z., Zhang, J., Qi, X., Ren, J., Ru, Y., Niu, Q., Liu, Z., Liu, X., Zheng, H., 2021b. African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway. J. Immunol. 206, 1844-1857.

    68. Li, G., Liu, X., Yang, M., Zhang, G., Wang, Z., Guo, K., Gao, Y., Jiao, P., Sun, J., Chen, C., Wang, H., Deng, W., Xiao, H., Li, S., Wu, H., Wang, Y., Cao, L., Jia, Z., Shang, L., Yang, C., Guo, Y., Rao, Z., 2020. Crystal structure of African swine fever virus pS273R protease and implications for inhibitor design. J. Virol. 94 e02125-19.

    69. Li, J., Song, J., Kang, L., Huang, L., Zhou, S., Hu, L., Zheng, J., Li, C., Zhang, X., He, X., Zhao, D., Bu, Z., Weng, C., 2021. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1beta and type I IFN production. PLoS Pathog. 17, e1009733.

    70. Li, T., Zhao, G., Zhang, T., Zhang, Z., Chen, X., Song, J., Wang, X., Li, J., Huang, L., Wen, L., Li, C., Zhao, D., He, X., Bu, Z., Zheng, J., Weng, C., 2021. African swine fever virus pE199L induces mitochondrial-dependent apoptosis. Viruses 13, 2204.

    71. Liu, H., Zhu, Z., Feng, T., Ma, Z., Xue, Q., Wu, P., Li, P., Li, S., Yang, F., Cao, W., Xue, Z., Chen, H., Liu, X., Zheng, H., 2021. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation. J. Virol. 95, e0082421.

    72. Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V.G., Wu, H., Lieberman, J., 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153-158.

    73. Marakasova, E.S., Eisenhaber, B., Maurer-Stroh, S., Eisenhaber, F., Baranova, A., 2017. Prenylation of viral proteins by enzymes of the host:virus-driven rationale for therapy with statins and FT/GGT1 inhibitors. Bioessays 39, 1700014.

    74. Martinez-Pomares, L., Simon-Mateo, C., Lopez-Otin, C., Vinuela, E., 1997. Characterization of the African swine fever virus structural protein p14.5:a DNA binding protein. Virology 229, 201-211.

    75. Matamoros, T., Alejo, A., Rodriguez, J.M., Hernaez, B., Guerra, M., Fraile-Ramos, A., Andres, G., 2020. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. mBio 11 e00789-20.

    76. McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., Holbrook, N.J., 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 21, 1249-1259.

    77. Miskin, J.E., Abrams, C.C., Dixon, L.K., 2000. African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT. J. Virol. 74, 9412-9420.

    78. Monteagudo, P.L., Lacasta, A., López, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa- Fiz, F., Accensi, F., Navas, M.J., Vidal, E., 2017. BA71ΔCD2:a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J. Virol. 91, 1017-1058.

    79. Montgomery, E., 1921. On A form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 34, 159-191.

    80. Muangkram, Y., Sukmak, M., Wajjwalku, W., 2015. Phylogeographic analysis of African swine fever virus based on the p72 gene sequence. Genet. Mol. Res. 14, 4566-4574.

    81. Mukherjee, S., Huda, S., Sinha Babu, S.P., 2019. Toll-like receptor polymorphism in host immune response to infectious diseases:a review. Scand. J. Immunol. 90, e12771.

    82. Neilan, J.G., Lu, Z., Kutish, G.F., Zsak, L., Burrage, T.G., Borca, M.V., Carrillo, C., Rock, D.L., 1997. A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence. Virology 230, 252-264.

    83. Netherton, C.L., Wileman, T.E., 2013. African swine fever virus organelle rearrangements. Virus Res. 173, 76-86.

    84. Nogal, M.L., Gonzalez de Buitrago, G., Rodriguez, C., Cubelos, B., Carrascosa, A.L., Salas, M.L., Revilla, Y., 2001. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J. Virol. 75, 2535-2543.

    85. O'Donnell, V., Risatti, G.R., Holinka, L.G., Krug, P.W., Carlson, J., Velazquez-Salinas, L., Azzinaro, P.A., Gladue, D.P., Borca, M.V., 2017. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J. Virol. 91, e01760.

    86. O'Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R., Borca, M.V., 2015. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J. Virol. 89, 6048-6056.

    87. Onisk, D.V., Borca, M.V., Kutish, G., Kramer, E., Irusta, P., Rock, D.L., 1994. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 198, 350-354.

    88. Perez-Nunez, D., Garcia-Urdiales, E., Martinez-Bonet, M., Nogal, M.L., Barroso, S., Revilla, Y., Madrid, R., 2015. CD2v interacts with adaptor protein AP-1 during African swine fever infection. PLoS One 10, e0123714.

    89. Petros, A.M., Olejniczak, E.T., Fesik, S.W., 2004. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83-94.

    90. Popescu, L., Gaudreault, N.N., Whitworth, K.M., Murgia, M.V., Nietfeld, J.C., Mileham, A., Samuel, M., Wells, K.D., Prather, R.S., Rowland, R.R.R., 2017. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology 501, 102-106.

    91. Powell, P.P., Dixon, L.K., Parkhouse, R.M., 1996. An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J. Virol. 70, 8527-8533.

    92. Ramirez-Medina, E., Vuono, E., O'Donnell, V., Holinka, L.G., Silva, E., Rai, A., Pruitt, S., Carrillo, C., Gladue, D.P., Borca, M.V., 2019. Differential effect of the deletion of African swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain. Viruses 11, 599.

    93. Ramiro-Ibanez, F., Ortega, A., Ruiz-Gonzalvo, F., Escribano, J.M., Alonso, C., 1997. Modulation of immune cell populations and activation markers in the pathogenesis of African swine fever virus infection. Virus Res. 47, 31-40.

    94. Razzuoli, E., Franzoni, G., Carta, T., Zinellu, S., Amadori, M., Modesto, P., Oggiano, A., 2020. Modulation of type I interferon system by African swine fever virus. Pathogens 9, 361.

    95. Reis, A.L., Goatley, L.C., Jabbar, T., Lopez, E., Rathakrishnan, A., Dixon, L.K., 2020. Deletion of the gene for the type I interferon inhibitor I329L from the attenuated African swine fever virus OURT88/3 strain reduces protection induced in pigs. Vaccines 8, 262.

    96. Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P., Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34, 4698-4705.

    97. Revilla, Y., Cebrian, A., Baixeras, E., Martinez, C., Vinuela, E., Salas, M.L., 1997. Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue:role of the BH1 domain. Virology 228, 400-404.

    98. Rivera, J., Abrams, C., Hernaez, B., Alcazar, A., Escribano, J.M., Dixon, L., Alonso, C., 2007. The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity. J. Virol. 81, 2923-2929.

    99. Rodriguez, C.I., Nogal, M.L., Carrascosa, A.L., Salas, M.L., Fresno, M., Revilla, Y., 2002. African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B. J. Virol. 76, 3936-3942.

    100. Rodriguez, F., Ley, V., Gomez-Puertas, P., Garcia, R., Rodriguez, J.F., Escribano, J.M., 1996. The structural protein p54 is essential for African swine fever virus viability. Virus Res. 40, 161-167.

    101. Rodríguez, J.M., García-Escudero, R., Salas, M.L., Andrés, G., 2004. African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. J. Virol. 78, 4299-1313.

    102. Rojo, G., Chamorro, M., Salas, M.L., Vinuela, E., Cuezva, J.M., Salas, J., 1998. Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. J. Virol. 72, 7583-7588.

    103. Salguero, F.J., Gil, S., Revilla, Y., Gallardo, C., Arias, M., Martins, C., 2008. Cytokine mRNA expression and pathological findings in pigs inoculated with African swine fever virus (E-70) deleted on A238L. Vet. Immunol. Immunopathol. 124, 107-119.

    104. Sanchez-Torres, C., Gomez-Puertas, P., Gomez-del-Moral, M., Alonso, F., Escribano, J.M., Ezquerra, A., Dominguez, J., 2003. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch. Virol. 148, 2307-2323.

    105. Sanchez-Vizcaino, J.M., Mur, L., Gomez-Villamandos, J.C., Carrasco, L., 2015. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 152, 9-21.

    106. Sanchez, E.G., Perez-Nunez, D., Revilla, Y., 2019. Development of vaccines against African swine fever virus. Virus Res. 265, 150-155.

    107. Sanchez, E.G., Quintas, A., Nogal, M., Castello, A., Revilla, Y., 2013. African swine fever virus controls the host transcription and cellular machinery of protein synthesis. Virus Res. 173, 58-75.

    108. Schlafer, D.H., Mcvicar, J.W., Mebus, C.A., 1984a. African swine fever convalescent sows-subsequent pregnancy and the effect of colostral antibody on challenge inoculation of their pigs. Am. J. Vet. Res. 45, 1361-1366.

    109. Schlafer, D.H., Mebus, C.A., McVicar, J.W., 1984b. African swine fever in neonatal pigs:passively acquired protection from colostrum or serum of recovered pigs. Am. J. Vet. Res. 45, 1367-1372.

    110. Silk, R.N., Bowick, G.C., Abrams, C.C., Dixon, L.K., 2007. African swine fever virus A238L inhibitor of NF-kappaB and of calcineurin phosphatase is imported actively into the nucleus and exported by a CRM1-mediated pathway. J. Gen. Virol. 88, 411-419.

    111. Simoes, M., Freitas, F.B., Leitao, A., Martins, C., Ferreira, F., 2019. African swine fever virus replication events and cell nucleus:new insights and perspectives. Virus Res. 270, 197667.

    112. Song, J., Li, K., Li, T., Zhao, G., Zhou, S., Li, H., Li, J., Weng, C., 2020. Screening of PRRSV- and ASFV-encoded proteins involved in the inflammatory response using a porcine iGLuc reporter. J. Virol. Methods 285, 113958.

    113. Stewart, M., 2007. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195-208.

    114. Sun, E., Huang, L., Zhang, X., Zhang, J., Shen, D., Zhang, Z., Wang, Z., Huo, H., Wang, W., Huangfu, H., Wang, W., Li, F., Liu, R., Sun, J., Tian, Z., Xia, W., Guan, Y., He, X., Zhu, Y., Zhao, D., Bu, Z., 2021. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microb. Infect. 10, 2183-2193.

    115. Sun, H., Jenson, J., Dixon, L.K., Parkhouse, M.E., 1996. Characterization of the African swine fever virion protein j18L. J. Gen. Virol. 77 (Pt 5), 941-946.

    116. Tait, S.W., Reid, E.B., Greaves, D.R., Wileman, T.E., Powell, P.P., 2000. Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa b alpha. Signal-induced release of i kappa b alpha results in binding of the viral homologue to NF-kappa B. J. Biol. Chem. 275, 34656-34664.

    117. Takeuchi, O., Akira, S., 2010. Pattern recognition receptors and inflammation. Cell 140, 805-820.

    118. Tan, X., Sun, L., Chen, J., Chen, Z.J., 2018. Detection of microbial infections through innate immune sensing of nucleic acids. Annu. Rev. Microbiol. 72, 447-478.

    119. Todd, D.J., Lee, A.H., Glimcher, L.H., 2008. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8, 663-674.

    120. Vallee, I., Tait, S.W., Powell, P.P., 2001. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis. J. Virol. 75, 10372-10382.

    121. van Boxel-Dezaire, A.H., Rani, M.R., Stark, G.R., 2006. Complex modulation of cell typespecific signaling in response to type I interferons. Immunity 25, 361-372.

    122. Wang, J., Shi, X.J., Sun, H.W., Chen, H.J., 2020. Insights into African swine fever virus immunoevasion strategies. J. Integr. Agr. 19, 11-22.

    123. Wang, N., Zhao, D., Wang, J., Zhang, Y., Wang, M., Gao, Y., Li, F., Wang, J., Bu, Z., Rao, Z., Wang, X., 2019. Architecture of African swine fever virus and implications for viral assembly. Science 366, 640-644.

    124. Wang, T., Sun, Y., Huang, S., Qiu, H.J., 2020. Multifaceted immune responses to African swine fever virus:implications for vaccine development. Vet. Microbiol. 249, 108832.

    125. Wang, X., Wu, J., Wu, Y., Chen, H., Zhang, S., Li, J., Xin, T., Jia, H., Hou, S., Jiang, Y., Zhu, H., Guo, X., 2018. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochem. Biophys. Res. Commun. 506, 437-443.

    126. Wonderlich, E.R., Williams, M., Collins, K.L., 2008. The tyrosine binding pocket in the adaptor protein 1 (AP-1) mu1 subunit is necessary for Nef to recruit AP-1 to the major histocompatibility complex class I cytoplasmic tail. J. Biol. Chem. 283, 3011-3022.

    127. Yanez, R.J., Rodriguez, J.M., Nogal, M.L., Yuste, L., Enriquez, C., Rodriguez, J.F., Vinuela, E., 1995. Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208, 249-278.

    128. Yang, J., Li, S., Feng, T., Zhang, X., Yang, F., Cao, W., Chen, H., Liu, H., Zhang, K., Zhu, Z., Zheng, H., 2021. African swine fever virus F317L protein inhibits NF-kappaB activation to evade host immune response and promote viral replication. mSphere 6, e0065821.

    129. Zakaryan, H., Cholakyans, V., Simonyan, L., Misakyan, A., Karalova, E., Chavushyan, A., Karalyan, Z., 2015. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Arch. Virol. 160, 1407-1414.

    130. Zhang, F., Moon, A., Childs, K., Goodbourn, S., Dixon, L.K., 2010. The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. J. Virol. 84, 10681-10689.

    131. Zhang, F., Hopwood, P., Abrams, C.C., Downing, A., Murray, F., Talbot, R., Archibald, A., Lowden, S., Dixon, L.K., 2006. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J. Virol. 80, 10514-10521.

    132. Zhao, D., Liu, R., Zhang, X., Li, F., Wang, J., Zhang, J., Liu, X., Wang, L., Zhang, J., Wu, X., Guan, Y., Chen, W., Wang, X., He, X., Bu, Z., 2019. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg. Microb. Infect. 8, 438-447.

    133. Zhao, G., Li, T., Liu, X., Zhang, T., Zhang, Z., Kang, L., Song, J., Zhou, S., Chen, X., Wang, X., Li, J., Huang, L., Li, C., Bu, Z., Zheng, J., Weng, C., 2021. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J. Biol. Chem. 298, 101480.

    134. Zhu, Y., Deng, J., Nan, M.L., Zhang, J., Okekunle, A., Li, J.Y., Yu, X.Q., Wang, P.H., 2019. The interplay between pattern recognition receptors and autophagy in inflammation. Adv. Exp. Med. Biol. 1209, 79-108.

    135. Zhuo, Y., Guo, Z., Ba, T., Zhang, C., He, L., Zeng, C., Dai, H., 2021. African swine fever virus MGF360-12L inhibits type I interferon production by blocking the interaction of importin alpha and NF-kappaB signaling pathway. Virol. Sin. 36, 176-186.

    136. Zsak, L., Lu, Z., Kutish, G.F., Neilan, J.G., Rock, D.L., 1996. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. J. Virol. 70, 8865-8871.

    137. Zsak, L., Caler, E., Lu, Z., Kutish, G.F., Neiland, J.G., Rock, D.L., 1998. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J. Virol. 72, 1028-1035.

  • 加载中

Article Metrics

Article views(5500) PDF downloads(33) Cited by()

Related
Proportional views

    Regulation of antiviral immune response by African swine fever virus (ASFV)

      Corresponding author: Wen-Hai Feng, whfeng@cau.edu.cn
    • a State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
    • b Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
    • c Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China

    Abstract: African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality approaching 100% in domestic pigs. ASF is an endemic in countries in sub-Saharan Africa. Now, it has been spreading to many countries, especially in Asia and Europe. Due to the fact that there is no commercial vaccine available for ASF to provide sustainable prevention, the disease has spread rapidly worldwide and caused great economic losses in swine industry. The knowledge gap of ASF virus (ASFV) pathogenesis and immune evasion is the main factor to limit the development of safe and effective ASF vaccines. Here, we will summarize the molecular mechanisms of how ASFV interferes with the host innate and adaptive immune responses. An in-depth understanding of ASFV immune evasion strategies will provide us with rational design of ASF vaccines.

    Reference (137) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return