Citation: Zihao Wang, Zhentao Liang, Rongguo Wei, Hongwei Wang, Fang Cheng, Yang Liu, Songdong Meng. Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging .VIROLOGICA SINICA, 2022, 37(6) : 823-830.  http://dx.doi.org/10.1016/j.virs.2022.10.007

Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging

  • Corresponding author: Songdong Meng, mengsd@im.ac.cn
  • Received Date: 01 July 2022
    Accepted Date: 21 October 2022
    Available online: 26 October 2022
  • The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from cold-chain foods to frontline workers poses a serious public health threat during the current global pandemic. There is an urgent need to design concise approaches for effective virus inactivation under different physicochemical conditions to reduce the risk of contagion through viral contaminated surfaces of cold-chain foods. By employing a time course of electron beam exposure to a high titer of SARS-CoV-2 at cold-chain temperatures, a radiation dose of 2 kGy was demonstrated to reduce the viral titer from 104.5 to 0 median tissue culture infectious dose (TCID50)/mL. Next, using human coronavirus OC43 (HCoV-OC43) as a suitable SARS-CoV-2 surrogate, 3 kGy of high-energy electron radiation was defined as the inactivation dose for a titer reduction of more than 4 log units on tested packaging materials. Furthermore, quantitative reverse transcription PCR (RT-qPCR) was used to test three viral genes, namely, E, N, and ORF1ab. There was a strong correlation between TCID50 and RT-qPCR for SARS-CoV-2 detection. However, RT-qPCR could not differentiate between the infectivity of the radiation-inactivated and nonirradiated control viruses. As the defined radiation dose for effective viral inactivation fell far below the upper safe dose limit for food processing, our results provide a basis for designing radiation-based approaches for the decontamination of SARS-CoV-2 in frozen food products. We further demonstrate that cell-based virus assays are essential to evaluate the SARS-CoV-2 inactivation efficiency for the decontaminating strategies.

  • 加载中
  • 10.1016j.virs.2022.10.007-ESM.docx
    1. Al-Hadyan, K., Alsbeih, G., Al-Harbi, N., Judia, S. Bin, Al-Ghamdi, M., Almousa, A., Alsharif, I., Bakheet, R., Al-Romaih, K., Al-Mozaini, M., Al-Ghamdi, S., Moftah, B., Alhmaid, R., 2021. Effect of gamma irradiation on filtering facepiece respirators and SARS-CoV-2 detection. Sci. Rep. 11. https://doi.org/10.1038/s41598-021-99414-6.

    2. Bai, C., Zhong, Q., Gao, G.F., 2022. Overview of SARS-CoV-2 genome-encoded proteins. Sci. China Life Sci. 65, 280-294.

    3. Boegel, S.J., Gabriel, M., Sasges, M., Petri, B., D'Agostino, M.R., Zhang, A., Ang, J.C., Miller, M.S., Meunier, S.M., Aucoin, M.G., 2021. Robust evaluation of ultraviolet-C sensitivity for SARS-CoV-2 and surrogate coronaviruses. Microbiol. Spectr. 9, 1-10.

    4. Brahmakshatriya, V., Lupiani, B., Brinlee, J.L., Cepeda, M., Pillai, S.D., Reddy, S.M., 2009. Preliminary study for evaluation of avian influenza virus inactivation in contaminated poultry products using electron beam irradiation. Avian Pathol. 38, 245-250.

    5. Chen, C., Feng, Y., Chen, Z., Xia, Y., Zhao, X., Wang, J., Nie, K., Niu, P., Han, J., Xu, W., 2022. SARS-CoV-2 cold-chain transmission: characteristics, risks, and strategies. J. Med. Virol. 94, 3540-3547.

    6. Chi, Y., Wang, Q., Chen, G., Zheng, S., 2021a. The long-term presence of SARS-CoV-2 on cold-chain food packaging surfaces indicates a new COVID-19 winter outbreak: a Mini review. Front. Public Health 9, 1-5.

    7. Chi, Y., Zheng, S., Liu, C., Wang, Q., 2021b. Transmission of SARS-CoV-2 on cold-chain food overpacks: a new challenge. J. Glob. Health 11, 1-4.

    8. Diehl, J.F., 2002. Food irradiation - past, present and future. Radiat. Phys. Chem. 63, 211-215.

    9. Dziedzic-Goclawska, A., Kaminski, A., Uhrynowska-Tyszkiewicz, I., Stachowicz, W., 2005. Irradiation as a safety procedure in tissue banking. Cell Tissue Bank. 6, 201-219.

    10. Elliott, L.H., McCormick, J.B., Johnson, K.M., 1982. Inactivation of lassa, marburg, and ebola viruses by gamma irradiation. J. Clin. Microbiol. 16, 704-708.

    11. Feng, X.L., Li, B., Lin, H.F., Zheng, H.Y., Tian, R.R., Luo, R.H., Liu, M.Q., Jiang, R. Di, Zheng, Y.T., Shi, Z.L., Bi, Y.H., Yang, X.L., 2021. Stability of SARS-CoV-2 on the surfaces of three meats in the setting that simulates the cold chain transportation. Virol. Sin. 36, 1069-1072.

    12. Fisher, D., Reilly, A., Zheng, A.K.E., Cook, A.R., Anderson, D.E., 2020. Seeding of outbreaks of covid-19 by contaminated fresh and frozen food. bioRxiv 2020.08.17.255166. https://doi.org/10.1101/2020.08.17.255166.

    13. Gidari, A., Sabbatini, S., Bastianelli, S., Pierucci, S., Busti, C., Bartolini, D., Stabile, A.M., Monari, C., Galli, F., Rende, M., Cruciani, G., Francisci, D., 2021. Sars-cov-2 survival on surfaces and the effect of uv-c light. Viruses 13, 2-9.

    14. Grieb, T., Forng, R.Y., Brown, R., Owolabi, T., Maddox, E., Mcbain, A., Drohan, W.N., Mann, D.M., Burgess, W.H., 2002. Effective use of gamma irradiation for pathogen inactivation of monoclonal antibody preparations. Biologicals 30, 207-216.

    15. Guo, M., Yan, J., Hu, Y., Xu, L., Song, J., Yuan, K., Cheng, X., Ma, S., Liu, J., Wu, X., Liu, L., Rong, S., Wang, D., 2022. Transmission of SARS-CoV-2 on cold-chain food:precautions can effectively reduce the risk. Food Environ. Virol. 14, 295-303.

    16. He, X., Liu, X., Li, P., Wang, P., Chen, H., Li, W., Li, B., Liu, T., Ma, J., 2022. A multi-stage green barrier strategy for the control of global SARS-CoV-2 transmission via. Cold Chain Goods 9, 13-16.

    17. Hume, A.J., Ames, J., Rennick, L.J., Duprex, W.P., Marzi, A., Tonkiss, J., Mühlberger, E., 2016. Inactivation of RNA viruses by gamma irradiation: a study on mitigating factors. Viruses 8, 204.

    18. Inagaki, H., Saito, A., Sugiyama, H., Okabayashi, T., Fujimoto, S., 2020. Rapid inactivation of SARS-CoV-2 with Deep-UV LED irradiation. Emerg. Microb. Infect. 9, 1744-1747.

    19. Jain, R., Sarkale, P., Mali, D., Shete, A., Patil, D., Majumdar, T., Suryawanshi, A., Patil, S., Mohandas, S., Yadav, P., 2021. Inactivation of SARS-CoV-2 by gamma irradiation. Indian J. Med. Res. 153, 196-198.

    20. Jarvis, M.C., 2020. Aerosol transmission of SARS-CoV-2: physical principles and implications. Front. Public Health 8, 1-8.

    21. Jeong, M.I., Lee, E.J., Park, S.Y., Kim, M.R., Park, S.R., Moon, Y., Choi, C., Ha, J.H., Ha, S. Do, 2021. Assessment of human norovirus inhibition in cabbage kimchi by electron beam irradiation using RT-qPCR combined with immunomagnetic separation. J. Food Sci. 86, 505-512.

    22. Kampf, G., Todt, D., Pfaender, S., Steinmann, E., 2020. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 104, 246-251.

    23. Korystov Yu, N., 1992. Contributions of the direct and indirect effects of ionizing radiation to reproductive cell death. Radiat. Res. 129, 228-234.

    24. Leslie, R.A., Zhou, S.S., Macinga, D.R., 2021. Inactivation of SARS-CoV-2 by commercially available alcohol-based hand sanitizers. Am. J. Infect. Control 49, 401-402.

    25. Li, F., Wang, J., Liu, Z., Li, N., 2022. Surveillance of SARS-CoV-2 contamination in frozen food-related samples — China, July 2020 - July 2021. China CDC Wkly 4, 465-470.

    26. Liu, P., Yang, M., Zhao, X., Guo, Y., Wang, L., Zhang, J., 2020. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface. Biosaf Health 2, 199-201.

    27. Liu, W., Guan, W., Zhong, N., 2020. Strategies and advances in combating COVID-19 in China. Engineering (Beijing) 6, 1076-1084.

    28. Loveday, E.K., Hain, K.S., Kochetkova, I., Hedges, J.F., Robison, A., Snyder, D.T., Brumfield, S.K., Young, M.J., Jutila, M.A., Chang, C.B., Taylor, M.P., 2021. Effect of inactivation methods on sars-cov-2 virion protein and structure. Viruses 13, 562.

    29. Ma, H., Wang, Z., Zhao, X., Han, J., Zhang, Y., Wang, H., Chen, C., Wang, J., Jiang, F., Lei, J., Song, J., Jiang, S., Zhu, S., Liu, H., Wang, D., Meng, Y., Mao, N., Wang, Y., Zhu, Z., Chen, Z., Wang, B., Song, Q., Du, H., Yuan, Q., Xia, D., Xia, Z., Liu, P., Wu, Y.A., Feng, Z., Gao, R., Gao, G.F., Xu, W., 2021. Long Distance Transmission of SARS-CoV-2 from Contaminated Cold Chain Products to Humans — Qingdao City, Shandong Province, China, September 2020, vol. 3. China CDC Wkly, pp. 637-644.

    30. Mousavi Khaneghah, A., Hashemi Moosavi, M., Oliveira, C.A.F., Vanin, F., Sant'Ana, A.S., 2020. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: an overview. Food Chem. Toxicol. 143, 111557.

    31. Näslund, J., Lagerqvist, N., Lundkvist, Å., Evander, M., Ahlm, C., Bucht, G., 2008. Kinetics of Rift Valley Fever Virus in experimentally infected mice using quantitative real-time RT-PCR. J. Virol. Methods 151, 277-282.

    32. Ohshima, H., Iida, Y., Matsuda, A., Kuwabara, M., 1996. Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated frozen aqueous solution of DNA. J. Radiat. Res. 37, 199-207.

    33. Pan, Y., Zhang, D., Yang, P., Poon, L.L.M., Wang, Q., 2020. Viral load of SARS-CoV-2. Lancet Infect. Dis. 20, 411-412.

    34. Peña, M., Ampuero, M., Garcés, C., Gaggero, A., García, P., Velasquez, M.S., Luza, R., Alvarez, P., Paredes, F., Acevedo, J., Farfán, M.J., Solari, S., Soto-Rifo, R., ValienteEcheverría, F., 2020. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. Int. J. Infect. Dis. 107, 201-204.

    35. Pillai, S.D., Shayanfar, S., 2017. Electron beam technology and other irradiation technology applications in the food industry. Top. Curr. Chem. 375, 6.

    36. Praveen, C., Dancho, B.A., Kingsley, D.H., Calci, K.R., Meade, G.K., Mena, K.D., Pillai, S.D., 2013. Susceptibility of murine norovirus and hepatitis a virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks. Appl. Environ. Microbiol. 79, 3796-3801.

    37. Predmore, A., Sanglay, G.C., DiCaprio, E., Li, J., Uribe, R.M., Lee, K., 2015. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation. Int. J. Food Microbiol. 198, 28-36.

    38. Preuss, T., Kamstrup, S., Kyvsgaard, N.C., Nansen, P., Miller, A., Lei, J.C., 1997. Comparison of two different methods for inactivation of viruses in serum. Clin. Diagn. Lab. Immunol. 4, 504-508.

    39. Ravindran, R., Jaiswal, A.K., 2019. Wholesomeness and safety aspects of irradiated foods. Food Chem. 285, 363-368.

    40. Ruetalo, N., Businger, R., Schindler, M., 2021. Rapid, dose-dependent and efficient inactivation of surface dried SARS-CoV-2 by 254 nm UV-C irradiation. Euro Surveill. 26, 2001718.

    41. Sellera, F.P., Sabino, C.P., Cabral, F.V., Ribeiro, M.S., 2021. A systematic scoping review of ultraviolet C (UVC) light systems for SARS-CoV-2 inactivation. J. Photochem. Photobiol., A 8, 100068.

    42. Smolko, E.E., Lombardo, J.H., 2005. Virus inactivation studies using ion beams, electron and gamma irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 236, 249-253.

    43. Sommer, R., Pribil, W., Appelt, S., Gehringer, P., Eschweiler, H., Leth, H., Cabaj, A., Haider, T., 2001. Inactivation of bacteriophages in water by means of non-ionizing(UV-253.7nm) and ionizing (gamma) radiation: a comparative approach. Water Res. 35, 3109-3116.

    44. Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., Qin, C., 2019. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 11, 59.

    45. Summers, W.C., Szybalski, W., 1967. Gamma-irradiation of deoxyribonucleic acid in dilute solutions: II. Molecular mechanisms responsible for inactivation of phage, its transfecting DNA, and of bacterial transforming activity. J. Mol. Biol. 26, 227-235.

    46. Takeda, Y., Uchiumi, H., Matsuda, S., Ogawa, H., 2020. Acidic electrolyzed water potently inactivates SARS-CoV-2 depending on the amount of free available chlorine contacting with the virus. Biochem. Biophys. Res. Commun. 530, 1-3.

    47. To, K.K., Tsang, O.T., Leung, W.S., Tam, A.R., Wu, T.C., Lung, D.C., Yip, C.C., Cai, J.P., Chan, J.M., Chik, T.S., Lau, D.P., Choi, C.Y., Chen, L.L., Chan, W.M., Chan, K.H., Ip, J.D., Ng, A.C., Poon, R.W., Luo, C.T., Cheng, V.C., Chan, J.F., Hung, I.F.H., Chen, Z., Chen, H., Yuen, K.Y., 2020. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20, 565-574.

    48. Uema, M., Yonemitsu, K., Momose, Y., Ishii, Y., Tateda, K., Inoue, T., Asakura, H., 2021. Effect of the photocatalyst under visible light irradiation in SARS-CoV-2 stability on an abiotic surface. Biocontrol Sci. 26, 119-125.

    49. Ulloa, S., Bravo, C., Ramirez, E., Fasce, R., Fernandez, J., 2021. Inactivation of SARS-CoV-2 isolates from lineages B.1.1.7 (Alpha), P.1 (Gamma) and B.1.110 by heating and UV irradiation. J. Virol. Methods 295, 114216.

    50. van Doremalen, N., T, B., Dh, M., Mg, H., A, G., Bn, W., A, T., Jl, H., Nj, T., Si, G., Jo, L.-S., E, de W., Vj, M., 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564-1567.

    51. Wang, M.Y., Zhao, R., Gao, L.J., Gao, X.F., Wang, D.P., Cao, J.M., 2020. SARS-CoV-2:structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol. 10, 1-17.

    52. Ward, R.L., 1980. Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation. Radiat. Res. 83, 330-344.

    53. Widera, M., Mühlemann, B., Corman, V.M., Toptan, T., Beheim-Schwarzbach, J., Kohmer, N., Schneider, J., Berger, A., Veith, T., Pallas, C., Bleicker, T., Goetsch, U., Tesch, J., Gottschalk, R., Jones, T.C., Ciesek, S., Drosten, C., 2021. Surveillance of sars-cov-2 in frankfurt am main from october to december 2020 reveals high viral diversity including spike mutation n501y in b.1.1.70 and b.1.1.7. Microorganisms 9, 1-10.

    54. Zhang, N., Gong, Y., Meng, F., Shi, Y., Wang, J., Mao, P., Xia, C., Bi, Y., Yang, P., Wang, F., 2021. Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. Sci. China Life Sci. 64, 486-488.

  • 加载中

Article Metrics

Article views(2457) PDF downloads(10) Cited by()

Related
Proportional views

    Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging

      Corresponding author: Songdong Meng, mengsd@im.ac.cn
    • a Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China;
    • b University of Chinese Academy of Sciences, Beijing, 100049, China;
    • c Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China;
    • d China Isotope and Radiaton Corporation, Beijing, 100089, China;
    • e Changchun CNNC CIRC Radiation Technology Co., LTD, Changchun, 130022, China

    Abstract: The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from cold-chain foods to frontline workers poses a serious public health threat during the current global pandemic. There is an urgent need to design concise approaches for effective virus inactivation under different physicochemical conditions to reduce the risk of contagion through viral contaminated surfaces of cold-chain foods. By employing a time course of electron beam exposure to a high titer of SARS-CoV-2 at cold-chain temperatures, a radiation dose of 2 kGy was demonstrated to reduce the viral titer from 104.5 to 0 median tissue culture infectious dose (TCID50)/mL. Next, using human coronavirus OC43 (HCoV-OC43) as a suitable SARS-CoV-2 surrogate, 3 kGy of high-energy electron radiation was defined as the inactivation dose for a titer reduction of more than 4 log units on tested packaging materials. Furthermore, quantitative reverse transcription PCR (RT-qPCR) was used to test three viral genes, namely, E, N, and ORF1ab. There was a strong correlation between TCID50 and RT-qPCR for SARS-CoV-2 detection. However, RT-qPCR could not differentiate between the infectivity of the radiation-inactivated and nonirradiated control viruses. As the defined radiation dose for effective viral inactivation fell far below the upper safe dose limit for food processing, our results provide a basis for designing radiation-based approaches for the decontamination of SARS-CoV-2 in frozen food products. We further demonstrate that cell-based virus assays are essential to evaluate the SARS-CoV-2 inactivation efficiency for the decontaminating strategies.

    Reference (54) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return