Citation: Hongming Huang, Jia Liu. Role of inactivated SARS-CoV-2 vaccine induced T cell responses in ameliorating COVID-19 severity .VIROLOGICA SINICA, 2023, 38(2) : 324-326.  http://dx.doi.org/10.1016/j.virs.2023.02.003

Role of inactivated SARS-CoV-2 vaccine induced T cell responses in ameliorating COVID-19 severity

  • Corresponding author: Jia Liu, jialiu77@hust.edu.cn
  • Received Date: 28 November 2022
    Accepted Date: 27 February 2023
    Available online: 01 March 2023
  • Highlights
    1. The efficacy of inactivated vaccines in preventing severe COVID-19 has been demonstrated in real-world observations.
    2. Inactivated SARS-CoV-2 vaccines induce a wider breadth of T-cell responses.
    3. SARS-CoV-2 vaccine efficacy should be evaluated from not only antibody response but also T cell immunity.

  • 加载中
    1. Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O'connell, A.M., Simons, D., Blomquist, P.B., Zaidi, A., Nash, S., Iwani Binti Abdul Aziz, N., Thelwall, S., Dabrera, G., Myers, R., Amirthalingam, G., Gharbia, S., Barrett, J.C., Elson, R., Ladhani, S.N., Ferguson, N., Zambon, M., Campbell, C.N.J., Brown, K., Hopkins, S., Chand, M., Ramsay, M., Lopez Bernal, J., 2022. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med, 386, 1532-1546.

    2. Chen, Y., Yin, S., Tong, X., Tao, Y., Ni, J., Pan, J., Li, M., Wan, Y., Mao, M., Xiong, Y., Yan, X., Yang, Y., Huang, R., Wu, C., Shen, H., 2022. Dynamic SARS-CoV-2-specific B-cell and T-cell responses following immunization with an inactivated COVID-19 vaccine. Clin Microbiol Infect, 28, 410-418.

    3. Chinese Center for Disease Control and Prevention (China CDC). 2023. COVID-19 Clinical and Surveillance Data-December 9, 2022 to January 30, 2023, China[Online]. China CDC Weekly. Available:https://weekly.chinacdc.cn/index.htm[Accessed Feb 7, 2023].

    4. Collie, S., Champion, J., Moultrie, H., Bekker, L.G., Gray, G., 2022. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N Engl J Med, 386, 494-496.

    5. Costa, P.R., Correia, C.A., Marmorato, M.P., Dias, J.Z.C., Thomazella, M.V., Cabral Da Silva, A., De Oliveira, A.C.S., Gusmão, A.F., Ferrari, L., Freitas, A.C., Patiño, E.G., Grifoni, A., Weiskopf, D., Sette, A., Scharf, R., Kallás, E.G., Silveira, C.G.T., 2022. Humoral and cellular immune responses to CoronaVac up to one year after vaccination. Front Immunol, 13, 1032411.

    6. Costa Clemens, S.A., Weckx, L., Clemens, R., Almeida Mendes, A.V., Ramos Souza, A., Silveira, M.B.V., Da Guarda, S.N.F., De Nobrega, M.M., De Moraes Pinto, M.I., Gonzalez, I.G.S., Salvador, N., Franco, M.M., De Avila Mendonça, R.N., Queiroz Oliveira, I.S., De Freitas Souza, B.S., Fraga, M., Aley, P., Bibi, S., Cantrell, L., Dejnirattisai, W., Liu, X., Mongkolsapaya, J., Supasa, P., Screaton, G.R., Lambe, T., Voysey, M., Pollard, A.J., 2022. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001):a phase 4, non-inferiority, single blind, randomised study. Lancet, 399, 521-529.

    7. Cromer, D., Juno, J.A., Khoury, D., Reynaldi, A., Wheatley, A.K., Kent, S.J., Davenport, M.P., 2021. Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection. Nat Rev Immunol, 21, 395-404.

    8. Deshpande, G.R., Yadav, P.D., Abraham, P., Nyayanit, D.A., Sapkal, G.N., Shete, A.M., Gupta, N., Vadrevu, K.M., Ella, R., Panda, S., Bhargava, B., 2022. Booster dose of the inactivated COVID-19 vaccine BBV152 (Covaxin) enhances the neutralizing antibody response against Alpha, Beta, Delta and Omicron variants of concern. J Travel Med, 29, taac039.

    9. Huang, Z., Xu, S., Liu, J., Wu, L., Qiu, J., Wang, N., Ren, J., Li, Z., Guo, X., Tao, F., Chen, J., Lu, D., Sun, X., Wang, W., 2022. Effectiveness of inactivated and Ad5-nCoV COVID-19 vaccines against SARS-CoV-2 Omicron BA. 2 variant infection, severe illness, and death. BMC Med, 20, 400.

    10. Krause, P.R., Fleming, T.R., Peto, R., Longini, I.M., Figueroa, J.P., Sterne, J.a.C., Cravioto, A., Rees, H., Higgins, J.P.T., Boutron, I., Pan, H., Gruber, M.F., Arora, N., Kazi, F., Gaspar, R., Swaminathan, S., Ryan, M.J., Henao-Restrepo, A.M., 2021. Considerations in boosting COVID-19 vaccine immune responses. Lancet, 398, 1377-1380.

    11. Kherabi, Y., Launay, O., Luong Nguyen, L.B., 2022. COVID-19 Vaccines against Omicron Variant:Real-World Data on Effectiveness. Viruses, 14, 2086.

    12. Lazarus, J.V., Romero, D., Kopka, C.J., Karim, S.A., Abu-Raddad, L.J., Almeida, G., Baptista-Leite, R., Barocas, J.A., Barreto, M.L., Bar-Yam, Y., Bassat, Q., Batista, C., Bazilian, M., Chiou, S.T., Del Rio, C., Dore, G.J., Gao, G.F., Gostin, L.O., Hellard, M., Jimenez, J.L., Kang, G., Lee, N., Matičič, M., Mckee, M., Nsanzimana, S., Oliu-Barton, M., Pradelski, B., Pyzik, O., Rabin, K., Raina, S., Rashid, S.F., Rathe, M., Saenz, R., Singh, S., Trock-Hempler, M., Villapol, S., Yap, P., Binagwaho, A., Kamarulzaman, A., El-Mohandes, A., 2022. A multinational Delphi consensus to end the COVID-19 public health threat. Nature, 611, 332-345.

    13. Li, Z., Xiang, T., Liang, B., Deng, H., Wang, H., Feng, X., Quan, X., Wang, X., Li, S., Lu, S., Yang, X., Wang, B., Zelinskyy, G., Trilling, M., Sutter, K., Lu, M., Dittmer, U., Yang, D., Zheng, X., Liu, J., 2021. Characterization of SARS-CoV-2-Specific Humoral and Cellular Immune Responses Induced by Inactivated COVID-19 Vaccines in a Real-World Setting. Front Immunol, 12, 802858.

    14. Liu, J., Chandrashekar, A., Sellers, D., Barrett, J., Jacob-Dolan, C., Lifton, M., Mcmahan, K., Sciacca, M., Vanwyk, H., Wu, C., Yu, J., Collier, A.Y., Barouch, D.H., 2022. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature, 603, 493-496.

    15. Lim, J.M.E., Hang, S.K., Hariharaputran, S., Chia, A., Tan, N., Lee, E.S., Chng, E., Lim, P.L., Young, B.E., Lye, D.C., Le Bert, N., Bertoletti, A., Tan, A.T., 2022. A comparative characterization of SARS-CoV-2-specific T cells induced by mRNA or inactive virus COVID-19 vaccines. Cell Rep Med, 3, 100793.

    16. Lim, W.W., Mak, L., Leung, G.M., Cowling, B.J., Peiris, M., 2021. Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19. Lancet Microbe, 2, e423.

    17. Mazzoni, A., Vanni, A., Spinicci, M., Capone, M., Lamacchia, G., Salvati, L., Coppi, M., Antonelli, A., Carnasciali, A., Farahvachi, P., Giovacchini, N., Aiezza, N., Malentacchi, F., Zammarchi, L., Liotta, F., Rossolini, G.M., Bartoloni, A., Cosmi, L., Maggi, L., Annunziato, F., 2022. SARS-CoV-2 Spike-Specific CD4+ T Cell Response Is Conserved Against Variants of Concern, Including Omicron. Front Immunol, 13, 801431.

    18. Mcmenamin, M.E., Nealon, J., Lin, Y., Wong, J.Y., Cheung, J.K., Lau, E.H.Y., Wu, P., Leung, G.M., Cowling, B.J., 2022. Vaccine effectiveness of one, two, and three doses of BNT162b2 and CoronaVac against COVID-19 in Hong Kong:a population-based observational study. Lancet Infect Dis, 22, 1435-1443.

    19. Pajon, R., Doria-Rose, N.A., Shen, X., Schmidt, S.D., O'dell, S., Mcdanal, C., Feng, W., Tong, J., Eaton, A., Maglinao, M., Tang, H., Manning, K.E., Edara, V.V., Lai, L., Ellis, M., Moore, K.M., Floyd, K., Foster, S.L., Posavad, C.M., Atmar, R.L., Lyke, K.E., Zhou, T., Wang, L., Zhang, Y., Gaudinski, M.R., Black, W.P., Gordon, I., Guech, M., Ledgerwood, J.E., Misasi, J.N., Widge, A., Sullivan, N.J., Roberts, P.C., Beigel, J.H., Korber, B., Baden, L.R., El Sahly, H., Chalkias, S., Zhou, H., Feng, J., Girard, B., Das, R., Aunins, A., Edwards, D.K., Suthar, M.S., Mascola, J.R., Montefiori, D.C., 2022. SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. N Engl J Med, 386, 1088-1091.

    20. Peng, Q., Zhou, R., Wang, Y., Zhao, M., Liu, N., Li, S., Huang, H., Yang, D., Au, K.K., Wang, H., Man, K., Yuen, K.Y., Chen, Z., 2022. Waning immune responses against SARS-CoV-2 variants of concern among vaccinees in Hong Kong. EBioMedicine, 77, 103904.

    21. Pérez-Then, E., Lucas, C., Monteiro, V.S., Miric, M., Brache, V., Cochon, L., Vogels, C.B.F., Malik, A.A., De La Cruz, E., Jorge, A., De Los Santos, M., Leon, P., Breban, M.I., Billig, K., Yildirim, I., Pearson, C., Downing, R., Gagnon, E., Muyombwe, A., Razeq, J., Campbell, M., Ko, A.I., Omer, S.B., Grubaugh, N.D., Vermund, S.H., Iwasaki, A., 2022. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat Med, 28, 481-485.

    22. U.S. Food and Drug Administration (FDA). 2021. Antibody Testing Is Not Currently Recommended to Assess Immunity After COVID-19 Vaccination:FDA Safety Communication[Online]. Available:https://www.fda.gov/medical-devices/safety-communications/antibody-testing-not-currently-recommended-assess-immunity-after-covid-19-vaccination-fda-safety[Accessed Feb 7, 2023].

    23. Wang, X., Zhao, X., Song, J., Wu, J., Zhu, Y., Li, M., Cui, Y., Chen, Y., Yang, L., Liu, J., Zhu, H., Jiang, S., Wang, P., 2022. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg Microbes Infect, 11, 477-481.

    24. World Health Organization (WHO). 2023. Available:https://covid19.who.int/data[Accessed Feb 7, 2023].

  • 加载中

Article Metrics

Article views(1505) PDF downloads(5) Cited by()

Related
Proportional views

    Role of inactivated SARS-CoV-2 vaccine induced T cell responses in ameliorating COVID-19 severity

      Corresponding author: Jia Liu, jialiu77@hust.edu.cn
    • a. Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China;
    • b. Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China

    Abstract: Highlights
    1. The efficacy of inactivated vaccines in preventing severe COVID-19 has been demonstrated in real-world observations.
    2. Inactivated SARS-CoV-2 vaccines induce a wider breadth of T-cell responses.
    3. SARS-CoV-2 vaccine efficacy should be evaluated from not only antibody response but also T cell immunity.

    Reference (24) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return