Citation: Yuanyuan Bie, Jieling Zhang, Jiyao Chen, Yumin Zhang, Muhan Huang, Leike Zhang, Xi Zhou, Yang Qiu. Design of antiviral AGO2-dependent short hairpin RNAs .VIROLOGICA SINICA, 2024, 39(4) : 645-654.  http://dx.doi.org/10.1016/j.virs.2024.05.001

Design of antiviral AGO2-dependent short hairpin RNAs

cstr: 32224.14.j.virs.2024.05.001
  • Corresponding author: Xi Zhou, zhouxi@wh.iov.cn
    Yang Qiu, yangqiu@wh.iov.cn
  • Received Date: 11 March 2024
    Accepted Date: 06 May 2024
    Available online: 09 May 2024
  • The increasing emergence and re-emergence of RNA virus outbreaks underlines the urgent need to develop effective antivirals. RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is triggered by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), which exhibits significant promise for antiviral therapy. AGO2-dependent shRNA (agshRNA) generates a single-stranded guide RNA and presents significant advantages over traditional siRNA and shRNA. In this study, we applied a logistic regression algorithm to a previously published chemically siRNA efficacy dataset and built a machine learning-based model with high predictive power. Using this model, we designed siRNA sequences targeting diverse RNA viruses, including human enterovirus A71 (EV71), Zika virus (ZIKV), dengue virus 2 (DENV2), mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and transformed them into agshRNAs. We validated the performance of our agshRNA design by evaluating antiviral efficacies of agshRNAs in cells infected with different viruses. Using the agshRNA targeting EV71 as an example, we showed that the anti-EV71 effect of agshRNA was more potent compared with the corresponding siRNA and shRNA. Moreover, the antiviral effect of agshRNA is dependent on AGO2-processed guide RNA, which can load into the RNA-induced silencing complex (RISC). We also confirmed the antiviral effect of agshRNA in vivo. Together, this work develops a novel antiviral strategy that combines machine learning-based algorithm with agshRNA design to custom design antiviral agshRNAs with high efficiency.

  • 加载中
  • 10.1016j.virs.2024.05.001-ESM.docx
    1. Alsing, S., Doktor, T. K., Askou, A. L., Jensen, E. G., Ahmadov, U., Kristensen, L. S., Andresen, B. S., Aagaard, L., Corydon, T. J. 2022. Vegfa-targeting mir-agshrnas combine efficacy with specificity and safety for retinal gene therapy. Mol Ther Nucleic Acids, 28: 58-76.

    2. Anobile, D. P., Poirier, E. Z. 2023. Rna interference, an emerging component of antiviral immunity in mammals. Biochem Soc Trans, 51: 137-146.

    3. Bartel, D. P. 2018. Metazoan micrornas. Cell, 173: 20-51.

    4. Birmingham, A., Anderson, E. M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., Baskerville, S., Maksimova, E., Robinson, K., Karpilow, J., Marshall, W. S., Khvorova, A. 2006. 3' utr seed matches, but not overall identity, are associated with rnai off-targets. Nat Methods, 3: 199-204.

    5. Bogerd, H. P., Whisnant, A. W., Kennedy, E. M., Flores, O., Cullen, B. R. 2014. Derivation and characterization of dicer- and microrna-deficient human cells. Rna, 20: 923-937.

    6. Caillaud, M., El Madani, M., Massaad-Massade, L. 2020. Small interfering rna from the lab discovery to patients' recovery. J Control Release, 321: 616-628.

    7. Cheloufi, S., Dos Santos, C. O., Chong, M. M., Hannon, G. J. 2010. A dicer-independent mirna biogenesis pathway that requires ago catalysis. Nature, 465: 584-589.

    8. Choi, J. H., Croyle, M. A. 2013. Emerging targets and novel approaches to ebola virus prophylaxis and treatment. BioDrugs, 27: 565-583.

    9. Cifuentes, D., Xue, H., Taylor, D. W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G. J., Lawson, N. D., Wolfe, S. A., Giraldez, A. J. 2010. A novel mirna processing pathway independent of dicer requires argonaute2 catalytic activity. Science, 328: 1694-1698.

    10. Davidson, B. L., McCray, P. B., Jr. 2011. Current prospects for rna interference-based therapies. Nat Rev Genet, 12: 329-340.

    11. DeVincenzo, J., Lambkin-Williams, R., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., Meyers, R., Gollob, J., Vaishnaw, A. 2010. A randomized, double-blind, placebo-controlled study of an rnai-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A, 107: 8800-8805.

    12. Fang, Y., Liu, Z., Qiu, Y., Kong, J., Fu, Y., Liu, Y., Wang, C., Quan, J., Wang, Q., Xu, W., Yin, L., Cui, J., Xu, Y., Curry, S., Jiang, S., Lu, L., Zhou, X. 2021. Inhibition of viral suppressor of rnai proteins by designer peptides protects from enteroviral infection in vivo. Immunity, 54: 2231-2244.e2236.

    13. Gao, Z., Berkhout, B., Herrera-Carrillo, E. 2019. Boosting agoshrna activity by optimized 5'-terminal nucleotide selection. RNA Biol, 16: 890-898.

    14. Gebert, L. F., Rebhan, M. A., Crivelli, S. E., Denzler, R., Stoffel, M., Hall, J. 2014. Miravirsen (spc3649) can inhibit the biogenesis of mir-122. Nucleic Acids Res, 42: 609-621.

    15. Ghildiyal, M., Zamore, P. D. 2009. Small silencing rnas: An expanding universe. Nat Rev Genet, 10: 94-108.

    16. Gish, R. G., Satishchandran, C., Young, M., Pachuk, C. 2011. Rna interference and its potential applications to chronic hbv treatment: Results of a phase i safety and tolerability study. Antivir Ther, 16: 547-554.

    17. Grimm, D., Wang, L., Lee, J. S., Schurmann, N., Gu, S., Borner, K., Storm, T. A., Kay, M. A. 2010. Argonaute proteins are key determinants of rnai efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest, 120: 3106-3119.

    18. Grimm, D., Streetz, K. L., Jopling, C. L., Storm, T. A., Pandey, K., Davis, C. R., Marion, P., Salazar, F., Kay, M. A. 2006. Fatality in mice due to oversaturation of cellular microrna/short hairpin rna pathways. Nature, 441: 537-541.

    19. Ha, M., Kim, V. N. 2014. Regulation of microrna biogenesis. Nat Rev Mol Cell Biol, 15: 509-524.

    20. Herrera-Carrillo, E., Berkhout, B. 2017. Dicer-independent processing of small rna duplexes: Mechanistic insights and applications. Nucleic Acids Res, 45: 10369-10379.

    21. Herrera-Carrillo, E., Harwig, A., Berkhout, B. 2015. Toward optimization of agoshrna molecules that use a non-canonical rnai pathway: Variations in the top and bottom base pairs. RNA Biol, 12: 447-456.

    22. Herrera-Carrillo, E., Harwig, A., Berkhout, B. 2017a. Silencing of hiv-1 by agoshrna molecules. Gene Ther, 24: 453-461.

    23. Herrera-Carrillo, E., Gao, Z., Berkhout, B. 2019. Influence of a 3' terminal ribozyme on agoshrna biogenesis and activity. Mol Ther Nucleic Acids, 16: 452-462.

    24. Herrera-Carrillo, E., Gao, Z. L., Harwig, A., Heemskerk, M. T., Berkhout, B. 2017b. The influence of the 5'-terminal nucleotide on agoshrna activity and biogenesis: Importance of the polymerase iii transcription initiation site. Nucleic Acids Res, 45: 4036-4050.

    25. Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y., Liang, X. J. 2020. Therapeutic sirna: State of the art. Signal Transduct Target Ther, 5: 101.

    26. Huesken, D., Lange, J., Mickanin, C., Weiler, J., Asselbergs, F., Warner, J., Meloon, B., Engel, S., Rosenberg, A., Cohen, D., Labow, M., Reinhardt, M., Natt, F., Hall, J. 2005. Design of a genome-wide sirna library using an artificial neural network. Nat Biotechnol, 23: 995-1001.

    27. Huntzinger, E., Izaurralde, E. 2011. Gene silencing by micrornas: Contributions of translational repression and mrna decay. Nat Rev Genet, 12: 99-110.

    28. Ichihara, M., Murakumo, Y., Masuda, A., Matsuura, T., Asai, N., Jijiwa, M., Ishida, M., Shinmi, J., Yatsuya, H., Qiao, S., Takahashi, M., Ohno, K. 2007. Thermodynamic instability of sirna duplex is a prerequisite for dependable prediction of sirna activities. Nucleic Acids Res, 35: e123.

    29. Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G., Linsley, P. S. 2003. Expression profiling reveals off-target gene regulation by rnai. Nat Biotechnol, 21: 635-637.

    30. Knott, S. R. V., Maceli, A., Erard, N., Chang, K., Marran, K., Zhou, X., Gordon, A., Demerdash, O. E., Wagenblast, E., Kim, S., Fellmann, C., Hannon, G. J. 2014. A computational algorithm to predict shrna potency. Mol Cell, 56: 796-807.

    31. Kong, J., Bie, Y., Ji, W., Xu, J., Lyu, B., Xiong, X., Qiu, Y., Zhou, X. 2023. Alphavirus infection triggers antiviral rnai immunity in mammals. Cell Rep, 42: 112441.

    32. Lisowiec-Wachnicka, J., Bartys, N., Pasternak, A. 2019. A systematic study on the influence of thermodynamic asymmetry of 5'-ends of sirna duplexes in relation to their silencing potency. Sci Rep, 9: 2477.

    33. Liu, Y. P., Schopman, N. C., Berkhout, B. 2013. Dicer-independent processing of short hairpin rnas. Nucleic Acids Res, 41: 3723-3733.

    34. Liu, Y. P., Karg, M., Harwig, A., Herrera-Carrillo, E., Jongejan, A., van Kampen, A., Berkhout, B. 2015. Mechanistic insights on the dicer-independent ago2-mediated processing of agoshrnas. RNA Biol, 12: 92-100.

    35. Lyu, B., Wang, C., Bie, Y., Kong, J., Wang, A., Jin, L., Qiu, Y., Zhou, X. 2022. Enoxacin shows broad-spectrum antiviral activity against diverse viruses by enhancing antiviral rna interference in insects. J Virol, 96: e0177821.

    36. Marino, N. D., Pinilla-Redondo, R., Csorgő, B., Bondy-Denomy, J. 2020. Anti-crispr protein applications: Natural brakes for crispr-cas technologies. Nat Methods, 17: 471-479.

    37. Pelossof, R., Fairchild, L., Huang, C. H., Widmer, C., Sreedharan, V. T., Sinha, N., Lai, D. Y., Guan, Y., Premsrirut, P. K., Tschaharganeh, D. F., Hoffmann, T., Thapar, V., Xiang, Q., Garippa, R. J., Ratsch, G., Zuber, J., Lowe, S. W., Leslie, C. S., Fellmann, C. 2017. Prediction of potent shrnas with a sequential classification algorithm. Nat Biotechnol, 35: 350-353.

    38. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., Khvorova, A. 2004. Rational sirna design for rna interference. Nat Biotechnol, 22: 326-330.

    39. Schierhorn, K. L., Sanchez-David, R. Y., Maillard, P. V. 2022. Mammalian antiviral rnai is on the move. Embo j, 41: e111210.

    40. Shabalina, S. A., Spiridonov, A. N., Ogurtsov, A. Y. 2006. Computational models with thermodynamic and composition features improve sirna design. BMC Bioinformatics, 7: 65.

    41. Shang, R., Zhang, F., Xu, B., Xi, H., Zhang, X., Wang, W., Wu, L. 2015. Ribozyme-enhanced single-stranded ago2-processed interfering rna triggers efficient gene silencing with fewer off-target effects. Nat Commun, 6: 8430.

    42. Skowronski, D. M., De Serres, G. 2021. Safety and efficacy of the bnt162b2 mrna covid-19 vaccine. N Engl J Med, 384: 1576-1577.

    43. Sommer, C., Gerlich, D. W. 2013. Machine learning in cell biology - teaching computers to recognize phenotypes. J Cell Sci, 126: 5529-5539.

    44. Vert, J. P., Foveau, N., Lajaunie, C., Vandenbrouck, Y. 2006. An accurate and interpretable model for sirna efficacy prediction. BMC Bioinformatics, 7: 520.

    45. Wang, C., Li, X., Ning, W., Gong, S., Yang, F., Fang, C., Gong, Y., Wu, D., Huang, M., Gou, Y., Fu, S., Ren, Y., Yang, R., Qiu, Y., Xue, Y., Xu, Y., Zhou, X. 2021. Multi-omic profiling of plasma reveals molecular alterations in children with covid-19. Theranostics, 11: 8008-8026.

    46. Wittrup, A., Lieberman, J. 2015. Knocking down disease: A progress report on sirna therapeutics. Nat Rev Genet, 16: 543-552.

    47. Wu, L., Belasco, J. G. 2008. Let me count the ways: Mechanisms of gene regulation by mirnas and sirnas. Mol Cell, 29: 1-7.

    48. Xie, Y., Yin, W., Zhang, Y., Shang, W., Wang, Z., Luan, X., Tian, G., Aisa, H. A., Xu, Y., Xiao, G., Li, J., Jiang, H., Zhang, S., Zhang, L., Xu, H. E., Shen, J. 2021. Design and development of an oral remdesivir derivative vv116 against sars-cov-2. Cell Res, 31: 1212-1214.

    49. Yang, J. S., Maurin, T., Robine, N., Rasmussen, K. D., Jeffrey, K. L., Chandwani, R., Papapetrou, E. P., Sadelain, M., O'Carroll, D., Lai, E. C. 2010. Conserved vertebrate mir-451 provides a platform for dicer-independent, ago2-mediated microrna biogenesis. Proc Natl Acad Sci U S A, 107: 15163-15168.

    50. Yoda, M., Cifuentes, D., Izumi, N., Sakaguchi, Y., Suzuki, T., Giraldez, A. J., Tomari, Y. 2013. Poly(a)-specific ribonuclease mediates 3'-end trimming of argonaute2-cleaved precursor micrornas. Cell Rep, 5: 715-726.

    51. Zhang, Z., Liu, Q., Sun, Y., Li, J., Liu, J., Pan, R., Cao, L., Chen, X., Li, Y., Zhang, Y., Xu, K., Guo, D., Zhou, L., Lan, K., Chen, Y. 2021. Live attenuated coronavirus vaccines deficient in n7-methyltransferase activity induce both humoral and cellular immune responses in mice. Emerg Microbes Infect, 10: 1626-1637.

  • 加载中

Figures(1)

Article Metrics

Article views(980) PDF downloads(1) Cited by()

Related
Proportional views

    Design of antiviral AGO2-dependent short hairpin RNAs

      Corresponding author: Xi Zhou, zhouxi@wh.iov.cn
      Corresponding author: Yang Qiu, yangqiu@wh.iov.cn
    • a. Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
    • b. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
    • c. University of Chinese Academy of Sciences, Beijing 100049, China;
    • d. School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China

    Abstract: The increasing emergence and re-emergence of RNA virus outbreaks underlines the urgent need to develop effective antivirals. RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is triggered by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), which exhibits significant promise for antiviral therapy. AGO2-dependent shRNA (agshRNA) generates a single-stranded guide RNA and presents significant advantages over traditional siRNA and shRNA. In this study, we applied a logistic regression algorithm to a previously published chemically siRNA efficacy dataset and built a machine learning-based model with high predictive power. Using this model, we designed siRNA sequences targeting diverse RNA viruses, including human enterovirus A71 (EV71), Zika virus (ZIKV), dengue virus 2 (DENV2), mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and transformed them into agshRNAs. We validated the performance of our agshRNA design by evaluating antiviral efficacies of agshRNAs in cells infected with different viruses. Using the agshRNA targeting EV71 as an example, we showed that the anti-EV71 effect of agshRNA was more potent compared with the corresponding siRNA and shRNA. Moreover, the antiviral effect of agshRNA is dependent on AGO2-processed guide RNA, which can load into the RNA-induced silencing complex (RISC). We also confirmed the antiviral effect of agshRNA in vivo. Together, this work develops a novel antiviral strategy that combines machine learning-based algorithm with agshRNA design to custom design antiviral agshRNAs with high efficiency.

    Figure (1)  Reference (51) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return