噬菌体定量检测青枯假单胞杆菌（Pseudomonas solanacearum）方法的研究

任欣正 莫寅元 方中达
（南京农业大学植病组，南京）

提 要

本文报道利用噬菌体ZP-2对青枯假单胞杆菌姜瘟菌株定量检测方法的研究。通过对噬菌的测定，结果表明在每毫升10^3 CFU的浓度下，噬菌体回收率可达81%，感染的敏感性较高。在每毫升10^2 CFU的条件下也能检测到活菌。

利用噬菌体对寄主细菌定量检测，前人已作过不少研究。有关定量检测，曾在水稻白叶枯病细菌和噬菌体系中作过研究。结果指出噬菌体制备技术检测植物病原细菌的方法不但快速、简便，而且敏感性较高。本研究在完成噬菌体ZP-2生物学特性的基础上，对利用此噬菌体定量检测其寄主细菌作了探索。

材料和方法

一、试验材料

菌株：指示姜瘟菌株Z0-12，由本教研室提供。
噬菌体：噬菌体ZP-2从发病生姜上分离。
培养基：普通肉浸培养基，TZC培养基。
介质：1%蛋白胨水，生理盐水（0.85%）。
抗血清：按常规方法，用噬菌体悬液作为抗原直接免疫家兔制备获得。

二、方法

用噬菌体ZP-2测定姜瘟菌株纯细菌的基本原理和方法，是在细菌液中加入过量的噬菌体，在一定温度下吸附一定时间后，加入噬菌体抗血清中和游离的噬菌体，而被吸附的噬菌体经过洗脱、装配等过程，在活化后释

透明的噬菌体法[12]。这些噬菌斑数可以代表样本中测得的活细菌数目。

用噬菌体抗血清检测细菌的关键就是要在较低的待测细菌浓度下，有一个较高的回收率（回收率是指用上述测得的活细菌数与样本中实际的活细菌数之比的百分数）。而高的回收率是高的吸附率的前提。

为了提高吸附率和回收率以及探索噬菌体 ZT-2 以 ZO-12 为指示菌表现噬菌斑的适宜环境条件，进行了以下几项实验：

1. 吸附温度测定：
(1) 以定量噬菌体加入细菌悬液[14]，在不同温度下吸附10分钟，观察噬菌斑数目的变化。
(2) 根据回收率变化以确定温度对吸附的影响。取菌液1毫升（10^5 CFU/ml），加1毫升噬菌体悬液（10^8 PFU/ml）在不同温度下吸附10分钟，然后加2毫升噬菌体抗血清，在相应温度下中和5分钟，取样0.1ml/皿，各3皿，28℃下培养过夜，噬菌斑计数。

2. 吸附时间的测定：
(1) 噬菌斑法：步骤同(1—2)。吸附及中和温度同30℃，吸附时间从10分钟至60分钟，每隔10分钟一个处理，每处理3皿，重复5次。
(2) 残留细菌数测定：在上述噬菌斑测定的同时，取样涂于TZC平板，0.1ml/皿，各3皿，重复5次。28℃下培养1～3天后菌落计数。

3. 噬菌体与细菌相对浓度比测定
不同浓度细菌与不同浓度噬菌体等量相混，在30℃水浴中吸附30分钟，加抗血清在相同温度下中和5分钟。

4. 从外溶解（Lysis from without）问题：

从外溶解就是当噬菌体尚未侵入细菌细胞时，细胞却发生破裂，在这一过程中，噬菌体没有裂解。这时加入抗血清，引起从外溶解的噬菌体由于没有侵入细胞而被中和或者受到钝化[6]。

如果产生从外溶解，在加入噬菌体后，样液中可能存在三种细菌形式。一是不被噬菌体感染的部分。二是被噬菌体感染的部位。三是产生从外溶解的部分。根据这三种细菌存在形式及特点，只要证明前两部分之和等于原有样液中的细菌数，就可以断定，在这一过程中不存在从外溶解。所以，本研究设计一种方法以测定前两部分的细菌数。方法同噬菌斑法，吸附和中和温度同30℃，吸附时间为30分钟。用残留细菌法测定第三部分的细菌数，用噬菌斑法测定第二部分的细菌数。原有样液中的细菌数，只要在平板上涂样，通过菌落计数能够测得。

5. 噬菌体抗血清对寄主细菌的作用。

为了排除噬菌体抗血清对细菌有作用的抗血，Adams[14]和Eisenstark[7]采用细菌抗血清吸附噬菌体悬液以去除存在于噬菌体悬液中的细菌抗原，但手续十分烦琐，而且抗血清效价较难提高。所以，本研究采用细菌抗原即细菌悬液去吸附噬菌体抗血清以去除细菌抗原部分。具体操作过程是，取一定量的细菌悬液（10^6 CFU/ml以上）与噬菌体抗血清等量相混，34℃水浴中吸附30分钟，离心（4000r/min）30分钟，使细菌下沉。
结果

1、最适吸附温度的确定：
(1)不同吸附温度下噬菌斑数目的变化结果见图1。在30°C以下的吸附对噬菌斑表现有利，34°C以上则对噬菌斑表现不利。
(2)不同吸附温度下回收率变化结果见图2。

从图2可知，在30°C下吸附，其回收率最高为68%，其次为32°C，为67%。在22-30°C之间随温度升高，回收率相应提高，但超过34°C，回收率又趋于偏低，而且变化无规则。

根据上述所得结果并结合噬菌体ZP-2的发育繁殖温度，确定30°C为最适吸附温度。

2、适宜吸附时间的确定
(1)噬菌斑法测得不同吸附时间下其回收率变化结果如图3所示。
图3表明，吸附40分钟的回收率最高为85%，其次是30分钟，为61%。从吸附10分钟至40分钟之间，随吸附时间延长回收率相应增高，超过40分钟，则回收率反而下降。这显然是由于受到噬菌体ZP-2潜伏期（54分钟）的限制。

(2) 经不同时间吸附后，在TZC平板上表现的残留菌数结果如图4所示。

图4表明，随吸附时间的延长，残留细菌数愈来愈少，即被感染的细菌数愈来愈多。但即使吸附40分钟，残留细菌数最少的还有12%，说明在上述条件下样液中的细菌不能被噬菌体全部侵染。

根据上述试验结果并考虑噬菌体ZP-2的潜伏期，确定30分钟为适宜吸附时间。

3. 噬菌体与细菌相对浓度比值的确定

不同浓度细菌与不同浓度噬菌体组合所得回收率结果列于表1。

随着噬菌体和细菌浓度的增高，回收率相应提高，表明在细菌浓度为10^2 CFU/ml时也能测到活菌，说明此法灵敏度高，但回收率却很低，而且不稳。在细菌浓度为10^6 CFU/ml时，回收率相应高些，而且趋于稳定。噬菌体浓度的提高，回收率也相应增高。在噬菌体/细菌为10^9/10^6时，回收率为60%，说明在这样的细菌浓度下可以用噬菌体ZP-2来测定。

继续提高细菌浓度，固然可使回收率再相应增高，然而较高的待测细菌浓度对定量方法研究的实际意义不大。

(3) 噬菌体/细菌浓度比为10^8/10^5情况下，证实是否产生外溶解释。

通过噬菌斑法测得被感染的细菌数量，用TZC平板测得残留细菌数及原有样液中的总细菌数，统计结果见表2。

| 表1. 不同噬菌体/细菌浓度比下残留菌数和回收率
| Tab 1. Recovery rate at different phage/bacteria concentration |
噬菌体浓度 (CFU/ml)	细菌浓度 (CFU/ml)	10^2	10^3	10^4	10^5	10^6	10^7	10^8	10^9
Phage concentration	Bacteria concentration								
10^2	0	0	0	0	0	0	0	0	0
10	30	50	70	90	100	110	120	130	140
10^3	10	20	30	40	50	60	70	80	90
10^4	10	20	30	40	50	60	70	80	90
10^5	10	20	30	40	50	60	70	80	90
10^6	10	20	30	40	50	60	70	80	90
10^7	10	20	30	40	50	60	70	80	90
10^8	10	20	30	40	50	60	70	80	90
10^9	10	20	30	40	50	60	70	80	90

| 表2. 不同噬菌体/细菌浓度比下的残留细菌和回收率
| Tab 2. Residual bacteria and recovery rate at different phage/bacteria concentration |
噬菌体/细菌 (CFU/ml)	原有细菌数 (噬菌前)	原有细菌数 (噬菌后)	原有细菌数百分率 (%)	原有细菌斑数	回收率 (%)
Phage/bacteria concentration	Original bacteria number	Residual bacteria number	Percentage of residual bacteria	Number of plaque	Recovery rate
10^2/10^3	104	64	39	59	60
10^3/10^3	153	92	41	90	90
10^4/10^3	116	90	77	28	24
10^5/10^3	138	104	78	0	0
10^6/10^3	184	160	97	0	0
从表2可知，噬菌体/细菌浓度比大小直接影响到被感染细菌数和残留细菌数，但却使噬菌体/细菌比值大到10⁸/10³时也不存在从外溶解现象，因为残留细菌数与噬菌斑数相加，接近原有样液中的细菌数即吸附前的细菌数。

5、噬菌体抗血清对寄主细菌作用的排除
用吸附后抗血清所作细菌凝集反应结果不发生细菌凝集。
用吸附前后抗血清分别处理纯菌，两者所得平板菌落数比较见表3。

表3 吸附前后抗血清对细菌的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>未吸附抗血清</th>
<th>吸附后抗血清</th>
<th>原有细菌数</th>
</tr>
</thead>
<tbody>
<tr>
<td>平板菌落数</td>
<td>317</td>
<td>427</td>
<td>453</td>
</tr>
<tr>
<td>减少比率%</td>
<td>30</td>
<td>6</td>
<td>/</td>
</tr>
</tbody>
</table>

附以排除抗血清对细菌的影响是一个比较好的方法。

6、用噬菌体定量测定细菌的方法

通过上述各项试验，最后确定测定程序为：

（1）噬菌体加抗血清对照取1ml 1%蛋白于小三角瓶，加1ml噬菌体悬浮液(10⁵CFU/ml)，30℃水浴中吸附30分钟，然后加2ml抗血清，再在相同温度下中和5分钟，取样0.1ml/皿，共3皿。

（2）纯菌液测定，取1ml菌液(10⁴CFU/ml)于小三角瓶中，加1ml噬菌体悬浮液(10⁴CFU/ml)，以下步骤同(1)。

7、纯菌回收率测定结果

从测定过程可知，从取菌液至最后的取样共稀释40倍，故在计算回收率及菌量时应乘40。回收率计算公式为：

$$ R_t = \frac{(A - A_{ck}) \times 40 \times 100}{n} $$

R_1为纯菌回收率，A为纯菌项平均噬菌斑数，Ack为噬菌体加抗血清对照项平均噬菌斑数，n为实际菌量即在平板上表现的菌数。

表4是对11个测定结果的统计，并计算其平均回收率。
表4 纯菌回收率

Tab. 4. Recovery rate of pure bacteria

<table>
<thead>
<tr>
<th>纯菌数</th>
<th>对照菌落数</th>
<th>平板菌落数</th>
<th>纯菌菌落数</th>
<th>回收率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>1.3×10³</td>
<td>26.3</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>2.0×10¹</td>
<td>34</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>2.1×10¹</td>
<td>51</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>1.07×10¹</td>
<td>24.3</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1.3</td>
<td>1.57×10³</td>
<td>33.3</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>1.12×10³</td>
<td>21</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>1.0×10³</td>
<td>23.3</td>
<td>98.2</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
<td>1.4×10³</td>
<td>24.3</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>1.3</td>
<td>1.4×10³</td>
<td>24.7</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>0.6</td>
<td>1.6×10³</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>1.28×10³</td>
<td>32</td>
<td>81</td>
</tr>
<tr>
<td>平均</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

表4表明在细菌浓度10⁵CFU/ml情况下，其平均回收率为81%。

讨 论

本研究利用噬菌体ZP-2对寄主细菌的定量测定方法作了探索。结果表明噬菌体技术在青枯假单胞杆菌定量测定方面的应用是可行的，它为植物组织和土壤带菌量检测奠定了基础。

整个纯菌测定过程的关键是如何提高测定回收率和增加稳定性，阻碍测定回收率提高的主要问题就是被测的细菌浓度较低，只有10⁵CFU/ml。而在大肠杆菌（Escherichia coli）T₅、T₆噬菌体的吸附试验中，大多是以较高细菌浓度如10⁶CFU/ml的条件下进行，所以才能在较短的5分钟或10分钟吸附时间内，使95%以上的细菌细胞受到感染。从吸附时间试验可以看，在噬菌体/细菌浓度比为10⁶/10⁵的情况下，经40分钟的吸附，仍然不能使所有的细菌都得到感染，残留细菌仍有12%。本研究通过吸附温度、吸附时间、噬菌体与细菌相对浓度比的调节及抗血清对细菌作用的排除，使纯细菌回收率达到81%。至于是否还能提高其回收率，这有待以后进一步研究。

是否产生从外溶解关系到方法的可行性。在噬菌体/细菌相对浓度比为10⁵/10⁵的情况下，噬菌体ZP-2不导致其寄主细菌产生从外溶解。其原因可能有二，一是由于细菌浓度低，每个细菌细胞本身受吸附的噬菌体数目不多。从电镜观察可知，大部分细菌细胞只吸附几个噬菌体，超过10个的很少。侵染倍数较低，故不易发生从外溶解。二是噬菌体ZP-2本身就不会导致寄主细菌从外溶解。Eisenstark认为不是所有的噬菌体都会产生从外溶解。而且如果起初以较低的侵染倍数发生吸附，尔后细菌就能抗较高的侵染倍数的噬菌体的侵染而不发生从外溶解。ZP-2噬菌斑测定中，尽管所用抗血清已通过吸附，排除了对细菌的干扰，但在此种情
况下，抗血清浓度也不能过浓。因为过浓的抗血清对噬菌斑有影响。根据比较试验，发现原有效价为320倍的抗血清，如果以稀释10倍的浓度去中和，结果使平皿中不表现噬菌斑，或者即使表现，与正常对照比较，噬菌斑直径小，噬菌斑数量很少。其原因可能是在培养基中的抗血清浓度过浓，使在取样和培养过程中释出的子代噬菌体与之发生中和反应，从而不能再侵染其他的寄主细菌，这样平皿中就不表现任何噬菌斑。如果抗血清浓度不是过浓或者被感染的细菌数较多，则产生的噬菌斑比正常情况下表现的噬菌斑要小。

因此，抗血清的浓度应该以能够把游离噬菌体中和，只留下少量噬菌斑的稀释倍数为宜，这要经过多次测定才能确定下来。

参考文献

[1] 任欣正，郭寅元，方守达，1986，青枯假单胞杆菌（Pseudomonas solanacearum（寄载体ZP-2型）ZP-3生物学性状的研究（待发表）
[3] 方守达，1979，植物研究方法：208-221，农业出版社
STUDIES ON METHOD FOR QUANTITATIVE DETECTION OF THE POPULATION OF PSEUDOMONAS SOLANACEARUM BY PHAGE TECHNIQUE

I. Quantitative Detecting Method of Pseudomonas solanacearum Bacteria by Phage Zp-2

Ren Xin-zheng Mo Yin-yuan Ping Zhong-da
(Nanjing Agricultural Univ. Dept. of Plant Protection, Nanjing)

The present paper deals with the phage technique to determine the Pseudomonas solanacearum bacteria quantitatively. Results show that mean recovery of pure bacteria cells was 81% at concentration of 10^3 colony formation unit (CFU) per ml of phage Zp-2 isolate. The optimum adsorption temperature of Zp-2 is 30°C, and optimum adsorption time is 30 min. It is a high sensitive method for detecting Pseudomonas solanacearum.