肾病综合征出血热病毒（HFRSV）的细胞内放射性标记

江紫生 陈章林 彭 民 易向民 戴志芳 刘红梅
（江西省医学研究所病毒生化研究室，南昌）
刘佩芹 陈瑞琪 万秋华
（江西省医学微生物研究所，南昌）

Radiolabeling of HFRSV in Infected Cells

Jiang Zi-sheng Chen Zhang-lin Pen Min Yi Xiang-min
Dai Zhi-fang Liu Hong-mei
(Department of Viral Biochemistry, Institute of Jiangxi Medical
Sciences, Nanchang, )

Liu Pei-qin Chen Rui-qi Wan Qiu-hua
(Department of Microbiology, Jiangxi Medical College,
Nanchang, )

Lee于1978年在南朝鲜分离到肾病综合征出血热病毒——Hantaan病毒后，我国病毒学
者对HFRSV的分离、流行病学、血清学以及病毒形态学做了大量工作。近几年来国
外用Hantaan病毒研究生化特征。研究病毒生化需要纯的病毒，针对HFRSV在细胞内复
制周期较长，病毒产量低，我们用 3H—氨基酸对HFRSV进行细胞内标记，初步探索感
染对细胞蛋白质合成的影响，标记的适当条件和标记HFRSV在病毒蛋白研究上的应用，
现将结果报告如下：

材料与方法

病毒 Hantaan70—118，陈株，接种乳鼠，取鼠脑制成毒液，经Vero E6细胞传
1代，收获的细胞冻解在维持液中作为种子毒液，分别测定TCID₅₀为10⁻¹和10⁻⁸。C94[3]
株，一直在Vero E6细胞传代，TCID₅₀为10⁻⁴，种子毒液使用前均存 放-70℃备用。

细胞培养和病毒感染 Vero E6细胞的生长液成分含Eagle’s MEM，10%灭 活小 牛
血清，青霉素、链霉素和庆大霉素含量依次是100μg，100μg，20μg/ml，pH7.4～7.6，
维持液仅降低小牛血清为2%，其余成分均与生长液相同。细胞培养瓶是38cm²（容 量

[注]本工作承安徽省医学研究所倪大石主任大力支持，将此致谢。
100ml)，加生长液或维持液10ml。细胞传代用0.25%胰蛋白酶（Difco：1：250）、0.02%EDTA消化。

病毒感染是挑选生长致密，形态完整的单层细胞，倒掉生长液，加入种子病毒液1ml，37℃吸附30-60分钟后，加足维持液至10ml，每日或隔天更换新鲜维持液，37℃继续培养。

病毒感染的放射性标记，感染病毒之单层细胞，在感染后第6天，用3H-氨基酸配制的标记维持液替换原来维持液。标记维持液成分为3H-一甲基、3H-苯基、3H-亮氨酸三种混合氨基酸（14.2μCi/ml），20%Eagle’s MEM，2%透析的小牛血清，80%特别配制的Eagle’s MEM（缺上述三种3H-氨基酸）、配制平衡标记维持液，每瓶细胞加入7ml，总放射性100μCi。标记后次日起，每瓶加入特别配制之5倍浓缩Eagle’s液，0.5-1ml/每瓶细胞，直到标记到第5天为止（即感染后第11天）。收集标记维持液及刮下细胞，前者3000rpm/30分钟，除去沉淀物；刮下的细胞，混悬适量PBS溶液中，离心洗3次，-30℃反复冻融3次后，超声波破碎2分钟，12000rpm离心15分钟，收集上清液。维持液及细胞上清液，分别作为细胞外内提取病毒材料。

免疫亲和层析纯化细胞内外的HFRSV 从肾病综合征出血热患者恢复期血清提取IgG与溴化氰活化的Sepharose 4B（Pharmacia）偶联（按产品说明书的方法进行），装柱；柱床15ml，先以PBS-0.02%NaHCO3,平衡，含HFRSV的细胞和维持液样品，分别在4℃以3ml/h流进亲和层析柱，然后以PBS—0.1%NP-40500ml通过柱子未结合的蛋白质，与IgG结合的病毒用0.1mol/L、pH11的碳酸盐缓冲液洗涤（流速5ml/h），2ml/管收集洗脱液，用4mol/LHCl中和至pH7.4。用ELISA法测定病毒抗原滴度，将阳性各管合并、浓缩，置-30℃待用。

ELISA法检测病毒抗原滴度用HFRS病人恢复期血清提取之IgG，作为包被抗原。辣根过氧化物酶标记免疫HFRSV IgG，按酶联方法上进行检测。用酶标光度计，测定样品在490nm吸收值（OD）。判断标准以OD值大于正常对照的2倍以上为阳性，并用倍比稀释度测定病毒抗原滴度。

放射性测量 用液体闪烁仪（FJ-2101型 二六二厂或Beckman），测量样品放射性（cpm）。

结果与讨论

一、放射性标记的正常细胞和感染细胞的对比关系：

我们用相同的放射性标记条件，对同一细胞株的正常细胞和HFRSV感染细胞进行标记。结果从表1表明，正常细胞和感染细胞两组标记率为11：1，由此可见病毒对细胞蛋白合成最终抑制90.1%，可以理解HFRSV感染细胞后，由于长时期复制过程，因此对细胞蛋白的合成抑制是逐步缓慢发展的。

二、感染细胞中病毒蛋白和细胞蛋白两者放射性标记比率：

用三株病毒，经4次感染Vero E6细胞，进行相同条件的放射性标记试验，就表2所示说明，病毒和细胞两者放射性标记比例的平均值是近似1%。根据结果分析，我们
表1 正常细和感染细胞放射性标记率的比较
Table 1 Comparison of radiolabeled rate between normal cells and infected cells

<table>
<thead>
<tr>
<th>分组</th>
<th>样本数</th>
<th>加入放射性</th>
<th>细胞内放射性</th>
<th>标记率</th>
<th>抑制率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample number</td>
<td>Added radioactivity (μci/PFC)</td>
<td>Cellular radioactivity (μci/PFC)</td>
<td>Labeled rate (%)</td>
<td>Rate of inhibition (%)</td>
</tr>
<tr>
<td>正常细胞</td>
<td>normal cell</td>
<td>5</td>
<td>100</td>
<td>3.55</td>
<td>3.55</td>
</tr>
<tr>
<td>感染细胞</td>
<td>infected cell</td>
<td>8</td>
<td>100</td>
<td>0.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>

*细胞内蛋白质合成抑制率
Rate of inhibition of cellular protein synthesis
PFC=每瓶细胞

认为可能是HFRSV感染细胞早期抑制部分细胞或对细胞蛋白的合成不完全关闭，所以细胞蛋白的放射性标记很高，不同批次试验的病毒和感染细胞放射性标记之比率有一定差异，这与病毒力和细胞质量等因素有关。

表2 病毒与细胞两者放射性标记比例
Table 2 Proportion of radiolabeling for viruses and cells

<table>
<thead>
<tr>
<th>试验次数</th>
<th>病毒V*</th>
<th>感染细胞ICb</th>
<th>病毒/感染细胞 V/IC</th>
<th>平均率 Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No.</td>
<td>(cpm×10^2)</td>
<td>(cpm×10^6)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>1</td>
<td>1.39</td>
<td>4.20</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>11.12</td>
<td>18.44</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>34.37</td>
<td>15.22</td>
<td>2.20</td>
<td>2.20</td>
</tr>
<tr>
<td>4</td>
<td>9.55</td>
<td>17.70</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

*细胞内外病毒放射性
a. Radioactivity of intracellular and extracellular viruses
b. 感染细胞放射性
b. Radioactivity of infected cells

三、放射性标记的细胞内外病毒量的差别

从表3表明，细胞外放射性标记的病毒比细胞内高1～4倍以上，并可观察到病毒标记率（细胞内外相加之和）的增高，主要是细胞外放射性标记病毒的增多，也就是病毒在细胞内复制后释放量增多的结果。根据试验结果推论，细胞感染初期仍可合成蛋白，维持较长生命时间，有利于HFRSV在细胞内长周期大量复制和释放，故感染细胞的维持液作为提取病毒[7,8]的主要来源，是有其实用价值的。

四、病毒感染滴度在细胞内放射性标记中的重要性

种子毒液TCID50的对数值大，则感染后的ELISA检测抗原滴度高和被标记病毒的放射性强，反之便降低和减弱，三者成正比关系（表4）。由此不仅证实感染滴度对HFRSV
表3 细胞内外放射性标记病毒的数量差异
Table 3 Quantitative difference for intracellular and extracellular virions

<table>
<thead>
<tr>
<th>试验次数 Test No</th>
<th>细胞外* Extra (dpm×10^5 PFC)</th>
<th>细胞内† Intra (dpm×10^5 PFC)</th>
<th>细胞外/细胞内 Extra/Intra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.81</td>
<td>1.80</td>
<td>2.1±1</td>
</tr>
<tr>
<td>2</td>
<td>10.09</td>
<td>6.05</td>
<td>1.6±1</td>
</tr>
<tr>
<td>3</td>
<td>37.58</td>
<td>8.62</td>
<td>4.4±1</td>
</tr>
<tr>
<td>4</td>
<td>7.40</td>
<td>3.50</td>
<td>2.0±1</td>
</tr>
</tbody>
</table>

* Extra=细胞外病毒
† Intra=细胞内病毒

量的增殖是个关键，且对细胞内放射性标记病毒，亦具有相同的重要性，当标记率较高时，标记病毒的比放射性可达13.4×10^4 dpm/100抗原滴度（表5），可适用于病 毒蛋白 分析，对HFRSV的分子生物学研究提供有利条件。

表4 种子病毒的感染性和放射性标记病毒的关系
Table 4 The relationship between the infectivity titre of seed viruses and radiolabeling of virions

<table>
<thead>
<tr>
<th>病毒株 Virus strain</th>
<th>种子病毒感染滴度 Infectivity titre of seed virus (log TCID50/ml)</th>
<th>上清抗原滴度 Antigen titre of supernatant</th>
<th>病毒放射性 Radioactivity of virion (dpm×10^5 PFC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C04</td>
<td>10^-4</td>
<td>1 : 4</td>
<td>1.36</td>
</tr>
<tr>
<td>Chen</td>
<td>10^-6</td>
<td>1 : 32</td>
<td>2.22</td>
</tr>
<tr>
<td>Hantaan</td>
<td>10^-7</td>
<td>1 : 128</td>
<td>5.68</td>
</tr>
</tbody>
</table>

表5 标记病毒的比放射性
Table 5 Specific activity of labeled viruses

<table>
<thead>
<tr>
<th>抗原滴度 Antigen titre</th>
<th>dpm/ml</th>
<th>(抗原滴度) dpm/100(Antigen titre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>15.4×10^4</td>
<td>12×10^4</td>
</tr>
<tr>
<td>256</td>
<td>22.9×10^4</td>
<td>8.9×10^4</td>
</tr>
<tr>
<td>128</td>
<td>17.1×10^4</td>
<td>13.4×10^4</td>
</tr>
<tr>
<td>64</td>
<td>6.5×10^4</td>
<td>10.2×10^4</td>
</tr>
</tbody>
</table>
参考文献

（1）宋干等，1982，中国医学科学院学报，4(2)：51
（2）严玉成等，1982，中国医学科学院学报，4(2)：67
（3）倪大石，1983，中华医学杂志，55(2) ：69．
（4）涂凡等，1983，中华医学杂志，55(2) ：68．
（5）刘佩芹等，1984，中国医学科学研究院学报，24(3) ：1．
（6）李卫民等，1985，中华医学杂志，55(2) ：110．
（7）Luanne H.E. et al．1984，J．Gen．virol．65，1 285—1 292．
（8）Connie S．S．et al．，1985，J．Infect．Dis．148(3)：1 065—1 072．

乙肝病毒 DNA 检测药盒在汉通过鉴定

The Appraisal of the Detecting Kit of Hepatitis B

Virus DNA has Passed

乙肝病毒（HBV）引起的乙型肝炎是人们普遍关注的传染病，目前一般采用血清学方法进行临床检测。中国科学院武汉病毒研究所分子病毒室用 α32P—dCTP 标记克隆化的 HBV DNA 片段作为分子杂交探针，制备检测药盒，研究 HBV DNA 在人血清、体液和组织中存在的状态。以 HBV DNA 作为传染性的指标比血清学方法更为直接可靠。该药盒不需特殊试剂和设备，能在一般科研、医疗、卫生和防疫等部门应用。两年来，经湖北、湖南、浙江、江苏、广东、河南和上海等省及十多家医疗机构应用，均取得满意的结果，其敏感度和特异性较目前临床上应用的方法要高。

1987年12月28日，由中国科学院武汉分院召开了“乙肝病毒 DNA 检测药盒鉴定会”。与会专家们在对药盒的研制及应用情况进行认真审议后一致认为：乙肝病毒 DNA 检测药盒使用方便，结果容易判断，其敏感度和特异性高。该药盒的研制成功，为乙肝的诊断、预防和疗效考核提供了有力的检测工具，具有显著的社会效益和经济效益，值得推广应用。

丁中泉 何丽华