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Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and 

hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven 

interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral 

replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual 

proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of 

the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will 

survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 

interaction site determined from flavivirus protease crystal structures. 
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Introduction 

Flaviviruses belong to the viral family Flaviviridae that 

include about 70 viruses (Brinton M A, 1981; Brinton M 

A, 2002; Westaway E G, et al., 1985). Many flaviviruses 

are significant human pathogens. Dengue virus (DENV) 

serotypes 1-4, Yellow fever virus (YFV), West Nile virus 

(WNV), Japanese encephalitis virus (JEV), and tick-borne 

encephalitis complex virus (TBEV) are categorized as 

global emerging pathogens and are NIAID Priority 

Pathogens as well (Burke D S, et al., 2001). Flaviviruses 

cause significant human disease, some of which are fatal 

such as dengue hemorrhagic syndromes and various 

encephalitides (Asnis D S, et al., 2001; Asnis D S, et al., 

2000; Kramer L D, et al., 2001; Shi P Y, et al., 2002; Shi 

P Y, et al., 2002; Shi P Y, et al., 2001).  

The World Health Organization has estimated annual 

human cases of 50,000 for JE (WHO, 2009), 200,000 for 

YF (WHO, 2009), and more than 50 million for Dengue 

fever (WHO, 2009). WNV is now the leading cause of 

arboviral encephalitis in the US, leading to more than a 

thousand human deaths (CDC, 2010; USGS, 2010). 

Morbidity and mortality rates are waning for WNV in the 

US, but are expected to increase for DENV. Currently, 

approximately 2.5 billion people are at risk of DENV 

infection, with an estimated 500,000 cases in the form of 

life-threatening disease such as dengue hemorrhagic fever 

and dengue shock syndrome (WHO, 2009). However, 

vaccines for humans currently are available only for YFV, 

JEV, and TBEV (Burke D S, et al., 2001); and more 

importantly no clinically approved antiviral therapy is 

available for treatment of flavivirus infection. Therefore, 

it is a public health priority to develop antiviral agents for 

post-infection treatment (Kramer L D, et al., 2007). 

This article will review recent advances in flavivirus 

drug development targeting the essential viral protease. 

  

The flaviviral genome structure 

The flavivirus genome RNA, approximately 11 kb in 

length, is single-stranded and of positive (i.e., mRNA-sense) 

polarity. The viral genome consists of a 5’ untranslated 

region (UTR), a single long open reading frame (ORF), 

and a 3’ UTR (Fig. 1) (Rice C M, et al., 1985; Shi P Y, 

et al., 2001). A cap is present at the 5’ end, followed by 
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Fig. 1 Crystal structures and sequence alignment of flavivirus NS2B-NS3 protease complexes. (A) Superposition of all available 
crystal structures of the NS2B-NS3 protease complex, in the absence or presence of inhibitors. All NS3 chains were colored gray, 
with NS2B in different colors. PDB codes: 2FP7 (WNV, with peptide inhibitor, green) (Erbel P, et al., 2006), 2FOM (DENV-2, apo 
form, cyan) (Erbel P, et al., 2006), 2GGV (WNV, apo form, red) (Aleshin A, et al., 2007), 2IJO (WNV, aprotinin bound, 
yellow)(Aleshin A, et al., 2007), 3E90 (WNV, with peptide inhibitor, blue) (Robin G, et al., 2009), 2WV9 (MVEV, NS3 full-length, 
apo form, orange) (Assenberg R, et al., 2009), 3LKW (DENV-1, apo form, brown) (Chandramouli S, et al., 2010), 2WHX (DENV-4, 
NS3 full-length, apo form, gray) (Luo D, et al., 2010), 3U1I (DENV-3, with peptide inhibitor, magenta)(Noble C G, et al., 2012). L51 
and W61 were labeled and shown in stick representation. (B) As in (A) with approximate 180º rotation, showing the active site of the 
superimposed NS2B-NS3 protease complexes and a bound inhibitor (PDB: 2FP7), with atom colors as: carbon (green), oxygen (red), 
and nitrogen (blue). (C) Surface representation of the NS3 protease active site (PDB: 2FP7), with atom colors as: carbon (gray), 
oxygen (red), and nitrogen (blue). The bound inhibitor was shown in stick representation, with atomic colors as in (B), and sulfur in 
yellow. NS2B was shown in ribbon representation (green). (D) Alignment of sequences of the NS2B cofactor region of representative 
flaviviruses with known sequences. Conserved hydrophobic residues and other strictly conserved residues that are essential or 
important for the protease function were shaded. Residues were colored according to the extent of their sequence conservation: >90% 
conserved (red); 50-90% conservation (blue); <50% less or not conserved (black). Residues essential for the protease function 
(Chappell K J, et al., 2008) were marked with a star above the sequences; residues less essential but still important for the protease 
function (Chappell K J, et al., 2008) were marked with a solid triangle symbol above the sequences. Abbreviations used here include: 
SLEV, Saint Louis encephalitis Virus; AHFV: Alkhumra hemorrhagic fever virus; OHFV: Omsk hemorrhagic fever virus; MMLV: 
Montana myotis leukoencephalitis virus. All other viruses were either defined with abbreviations in the main text or abbreviated here 
with their full-name prior to a “V” representing for virus. 

 

the conserved dinucleotide sequence 5’-AG-3’ (Cleaves G 

R, et al., 1979). The 3’ end of the genome terminates with 

5’-CUOH-3’ (Wengler G, 1981) rather than with a poly(A) 

tract. The single ORF of flavivirus encodes a polyprotein 

precursor of about 3,430 amino acids (Fig. 1A). The 

polyprotein is co- and post-translationally processed by 

viral and cellular proteases into three structural proteins 

(capsid [C], premembrane [prM] or membrane [M], and 

envelope [E]) and seven nonstructural (NS) proteins (NS1, 

NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (Chambers 
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T J, et al., 1990). The structural proteins form the viral 

particle and are involved in viral fusion with host cells 

including monocytes, macrophages and dendritic cells (Li 

L, et al., 2008; Lindenbach B D, et al., 2007; Marianneau 

P, et al., 1999; Tassaneetrithep B, et al., 2003). Low pH in 

the endosomal compartment triggers fusion of the viral 

and host cell membrane, which leads to the release of the 

nucleocapsid and viral RNA into the cytoplasm. This 

process is mediated by the viral E protein which is able to 

switch among different oligomeric states: as a trimer of 

prM-E heterodimers in immature particles, as a dimer in 

mature virus, and as a trimer when fusing with a host cell 

(Bressanelli S, et al., 2004; Modis Y, et al., 2004). The 

virus prM glycoprotein can be cleaved by furin protease 

to release the N-terminal “pr” residues during maturation, 

leaving only the ectodomain and C-terminal transmembrane 

region of “M” in the virion. The pr peptide protects 

immature virions against premature fusion with the host 

membrane (Guirakhoo F, et al., 1992; Li L, et al., 2008; 

Zhang Y, et al., 2003).  

The NS proteins participate in RNA replication, virion 

assembly, and evasion of innate immune responses 

(Lindenbach B D, et al., 2007). The majority of the 

flavivirus NS proteins are multifunctional. NS1 is a large 

glycoprotein which is required for negative strand RNA 

synthesis (Lindenbach B D, et al., 1997; Lindenbach B D, 

et al., 1999; Muylaert I R, et al., 1997). NS2A has been 

reported to function in the generation of virus-induced 

membranes during virus assembly and/or release of 

infectious flavivirus particles (Kummerer B M, et al., 2002; 

Leung J Y, et al., 2008). NS2B is a required cofactor for the 

protease activity of NS3 (Arias C F, et al., 1993; Chambers T 

J, et al., 1991; Chambers T J, et al., 1993; Falgout B, et al., 

1993). NS3 is a large multi-functional protein with the 

activities of a serine protease (with NS2B as a cofactor), a 

5′-RNA triphosphatase (RTPase), a nucleoside triphosphatase 

(NTPase), and a helicase (Li H, et al., 1999; Warrener 

P, et al., 1993; Wengler G, 1991). NS4A is an integral 

membrane protein involved in membrane rearrangements 

required to form the viral replication complex (Miller S, 

et al., 2007; Roosendaal J, et al., 2006). NS4B has been 

reported to inhibit the type I interferon response of host 

cells, and might modulate viral RNA synthesis (Grant D, 

et al., 2011; Munoz-Jordan J L, et al., 2005; Umareddy I, 

et al., 2006). NS5 is the largest flaviviral protein with 

multiple enzymatic activities, namely the RNA-dependent 

RNA polymerase (RdRp) (Ackermann M, et al., 2001; 

Guyatt K J, et al., 2001; Tan B H, et al., 1996), the N-7 

guanine and 2’-O ribose methyltransferase (Dong H, 

et al., 2012; Egloff M P, et al., 2002; Koonin E V, 1993; 

Ray D, et al., 2006; Zhou Y, et al., 2007), and the RNA 

guanylyltransferase (GTase) (Issur M, et al., 2009). 

Several NS proteins such as NS2A, NS4A, NS4B, and 

NS5 are thought to interfere with host immune responses 

(Ashour J, et al., 2009; Best S M, et al., 2005; Daffis S, et 

al., 2010; Guo J, et al., 2005; Munoz-Jordan J L, et al., 

2003; Munoz-Jordan J L, et al., 2005). 

 

The NS3/NS2B protease 

The NS3 protein (~618 amino acids (aa)) is the second 

largest protein encoded by flavivirus. The N-terminal 170 

aa of NS3 displays protease activity, and a hydrophobic 

core of about 40 aa in length within NS2B provides an 

essential cofactor function (Chambers T J, et al., 1991; 

Chambers T J, et al., 1990; Falgout B, et al., 1991). The 

NS3 protease belongs to the trypsin serine protease 

superfamily with a catalytic triad (e.g. His51-Asp75-Ser135 

for the DENV NS3) (Bazan J F, et al., 1989). The 

NS2B/NS3 protease complex prefers a substrate with 

basic residues (Arg or Lys) at the P1 and P2 sites and a 

short side-chain amino acid (Gly, Ser, or Ala) at the P1′ 

site (Chambers T J, et al., 1990; Gouvea I E, et al., 2007). 

The central function of the NS2B/NS3 protease complex 

is to process the flavivirus polyprotein precursor. As shown 

in Fig. 1, the peptide bonds between capsid, NS2A-NS2B, 

NS2B-NS3, NS3-NS4A and NS4B-NS5 are cleaved by 

the NS2B/NS3 protease complex, leading to the release of 

mature individual NS proteins.  

The NS2B/NS3 protease complex is essential for the 

flavivirus replication and virion assembly, as evidenced 

by the lack of production of infectious virions in mutants 

carrying inactivating viral proteases (Chambers T J, et al., 

1993). 

 

Crystal structure of the NS3/NS2B protease complex 

The development of protease inhibitor began with the 

determination of the three-dimensional (3D) structures of 

the flavivirus NS3 protease, the NS2B/NS3 protease 

complex, and the protease-inhibitor complexes (Aleshin A, 

et al., 2007; Assenberg R, et al., 2009; Chandramouli S, et 

al., 2010; Erbel P, et al., 2006; Hammamy M Z, et al., 

2013; Luo D, et al., 2008; Luo D, et al., 2010; Luo D, et 

al., 2008; Noble C G, et al., 2012; Robin G, et al., 2009). 

Currently, fourteen crystal structures of the NS2B/NS3 

protease complex are available for the flavivirus NS2B/NS3 

protease complexes, including the apo structures of 

proteases of WNV, DENV-1, DENV-2, DENV-4, and 

Murray Valley encephalitis virus (MVEV), the structures 

of proteases of WNV and DENV3 in complex peptide 

substrate-based inhibitors, and the broad-spectrum serine 
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protease inhibitor aprotinin-bound structures of proteases 

of WNV and DENV-3.  

In general, the flavivirus NS3 proteases display a 

chymotrypsin-like fold (Erbel P, et al., 2006). In all these 

structures, a NS2B fragment composed of about 44-47 

amino acids, which provides an essential cofactor 

function (Chambers T J, et al., 1991; Chambers T J, et al., 

1990; Falgout B, et al., 1990), is associated with NS3. 

When no substrate or inhibitor is present, the N-terminal 

(residues 51-61 in DENV-2) but not the C-terminal 

portion of NS2B is bound to NS3 (Erbel P, et al., 2006) 

(Fig. 1A). The central portion of this N-terminal part 

forms a β-strand and is part of the β-barrel of NS3 (Erbel 

P, et al., 2006). Consistent with the important structural 

role of this part of NS2B, structural comparison indicates 

that the NS2B residues within the N-terminal portion 

display similar conformations in all structures, regardless 

of presence or absence of inhibitors (Fig. 1A). It has also 

been reported that the N-terminal portion of NS2B (aa 

49-66 only) is sufficient to bind and stabilize the NS3 

conformation (Luo D, et al, 2008; Luo D, et al., 2010), 

although such a complex lacks protease activity (Luo D, 

et al., 2008; Luo D, et al., 2010; Phong W Y, et al., 2011). 

Mutagenesis studies demonstrated that two NS2B regions 

are critical for the protease function (Chappell K J, et al., 

2008; Niyomrattanakit P, et al., 2004; Phong W Y, et al., 

2011; Radichev I, et al., 2008) (Fig. 1D). Region one 

corresponds to the N-terminal region mentioned above, 

whereas region two is referred to a C-terminal region 

composed of residues 74-86 of NS2B. Residues within 

region one show great sequence conservation, especially for 

several hydrophobic residues at positions 51, 53, 59, and 

61 (in DENV-2 order), with Trp61 strictly conserved 

(Fig. 1D). Functional studies indicated that three of these 

residues are essential, and the remaining one is also 

important, for the protease function (Chappell K J, et al., 

2008). Structure comparison indicated that these conserved 

hydrophobic residues bind deeply into several pockets of 

NS3 (Fig. 1A). In contrast, residues within region two 

display greater sequence variation than those within 

region one, which may contribute to their fine substrate 

specificities as region two is part of the protease active 

site (see below) (Fig. 1B, 1C). In addition, in contrast to 

the N-terminal region which shows similar conformations, 

the C-terminal portion (beyond aa 61) of NS2B displays 

significantly large conformational differences between 

inhibitor-bound and inhibitor-free structures, and even 

between inhibitor-free structures (Fig. 1A). These results 

suggest that the N-terminal portion, but not the C-terminal 

portion, of NS2B is essential for NS2B to bind and 

stabilize NS3. 

The C-terminal portion of NS2B has an integral role in 

active site formation in WNV and DENV. Although the 

C-terminal portions of NS2B display significantly different 

conformation in various apo crystal structures, the 

C-terminal portions of bound structures show remarkable 

conformational similarity when the complex is bound 

either to substrate analogs or the protease inhibitor 

aprotinin (Fig. 1B). In the structure of inhibitor-bound 

form, the C-terminal portion of NS2B forms a β-hairpin 

and “wraps around” the NS3 core, closing the NS3 active 

site. Several residues within this region make direct 

interactions, including hydrogen bonds, with substrate 

analogs or aprotinin inhibitors. Unsurprisingly, results 

from mutagenesis studies have demonstrated the importance 

of this region in protease function (Chappell K J, et al., 

2008; Niyomrattanakit P, et al., 2004), likely due to its 

structural role in formation of the protease active site. The 

active site of the flavivirus NS2B/NS3 protease complex 

is quite flat and hydrophilic (Fig. 1C) and requires several 

basic residues as substrates, potentially hampering the 

development of potent competitive inhibitors.  

 

Inhibitors for the NS3/NS2B protease 

Viral proteases are proven antiviral targets. Numerous 

inhibitors against the HIV protease have been successfully 

developed and used in treatment of AIDS (Menendez-Arias 

L, 2010). Two HCV protease inhibitors have been recently 

approved to treat chronic HCV infections by FDA (Lin C, 

et al., 2006; Lin K, et al., 2006; Sarrazin C, et al., 2007). 

The success of protease inhibitors in other viruses has put 

the flavivirus protease in the focus of development for 

anti-flavivirus therapy. Both high throughput screening 

(HTS) and structure-based drug design have been 

explored to identify inhibitors against flavivirus protease. 

Leung et al. reported the first inhibition studies using a 

recombinant covalently-linked NS2B/NS3 protease complex 

of DENV2 (Leung D, et al., 2001). Of sixteen standard 

serine protease inhibitors tested, however, only aprotinin, 

a basic pancreatic trypsin inhibitor, was shown to inhibit 

the enzyme with nanomolar IC50 (Drug concentration 

required to reduce enzyme activity by 50%) (Leung D, 

et al., 2001; Mueller N H, et al., 2007). Aprotinin was 

found to bind the NS2B/NS3 proteases of all four serial 

types of DENV with high affinity (picomolar) (Li J, et al., 

2005); the in vivo efficacy of aprotinin in reduction of 

flavivirus has not been reported. Nevertheless, although 

aprotinin is a potent inhibitor for the flavivirus NS3 

protease, severe safety issues prevent it from being used 

as a drug. Aprotinin is a small protein which inhibits 
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trypsin and related proteolytic enzymes and has been 

administered by injection, under the trade name Trasylol 

(Bayer) as a medication to reduce bleeding during complex 

surgery, such as heart and liver surgery, before 2007. The 

drug was permanently withdrawn worldwide in 2008 after 

studies suggested that its use increased the risk of 

complications or death (Mangano D T, et al., 2006; 

Mangano D T, et al., 2007).  

Besides standard serine protease inhibitors, several 

peptidic α-keto amide inhibitors were also explored 

(Leung D, et al., 2001). Two peptidic inhibitor candidates 

showed inhibition activity for the protease with low 

micromolar IC50. Several similar peptidic inhibitor 

candidates, including cyclopeptides (Gao Y, et al., 2010; 

Xu S, et al., 2012), were found to be active for the 

NS2B/NS3 protease complex of DENV2, WNV, and YFV 

with Ki (the absolute inhibition constant) as low as 43 nM 

(Chanprapaph S, et al., 2005; Knox J E, et al., 2006; Nall 

T A, et al., 2004; Nitsche C, et al., 2012; Schuller A, et al., 

2011; Yin Z, et al., 2006; Yin Z, et al., 2006). Although 

the in vivo efficacy of these inhibitor candidates has not 

been verified, the highly charged nature of these peptidic 

inhibitors may indicate poor bioavailability. The following 

studies seemed to verify this notion. Shiryeav et al. 

reported that the D-arginine-based peptides are potent 

inhibitors for the WNV NS3 protease, with Ki as low as 1 

nM in an in vitro biochemical protease assay (Shiryaev S, 

et al., 2006). However, in a cell-based virus reduction 

assay, the inhibitor only showed micromolar inhibitory 

activity against the WNV (Shiryaev S, et al., 2006). In 

another study, Stoermer et al. reported that a peptidic 

inhibitor candidate showed high potency (Ki = 9 nM) for 

the WNV protease (Stoermer M J, et al., 2008). The 

inhibitor, composed of cationic tripeptide (KKR) with a 

phenacetyl-cap at the N-terminus and an aldehyde at the 

C-terminus, is cell permeable and stable in serum, but  

displays a much reduced antiviral activity (EC50 (concentration 

required for 50% viral reduction)=1.6 μM) (Stoermer M J, 

et al., 2008). The poor activities of these peptide-based 

inhibitors in cell-based assays may be explained by the 

poor penetration of charged peptides across the cell 

membrane. Nevertheless, the low bioavailability of these 

substrate inhibitors could limit their potential as effective 

chemotherapeutics (Chappell K J, et al., 2008; Noble C G, 

et al., 2010). 

In addition to the standard inhibitors based on substrates, 

attempts to use protein as inhibitor has been explored 

(Rothan H A, et al., 2012). Rothan et al. reported that 

retrocyclin-1 (RC-1) can inhibit the NS2B/NS3 protease 

activity in vitro with IC50 in micromolar range. However, 

it only moderately reduced the virus growth even at 150 µM 

concentration. 

Nonsubstrate based inhibitors were also investigated, 

though only moderate inhibition activity (IC50 in low 

micromolar range) was observed (Cregar-Hernandez L, et 

al., 2011; Ganesh V K, et al., 2005; Jia F, et al., 2010; 

Kiat T S, et al., 2006). To explore more small molecular 

inhibitors for the protease, both in silico-based and 

protein-based HTS has been developed (Aravapalli S, et 

al., 2012; Deng J, et al., 2012; Ekonomiuk D, et al., 2009; 

Ekonomiuk D, et al., 2009; Ezgimen M, et al., 2012; Gao 

Y, et al., 2013; Johnston P A, et al., 2007; Knehans T, et 

al., 2011; Lai H, et al., 2013; Lai H, et al., 2013; Mueller 

N H, et al., 2008; Nitsche C, et al., 2011; Samanta S, et al., 

2012; Steuer C, et al., 2011; Tiew K C, et al., 2012; 

Tomlinson S M, et al., 2012; Tomlinson S M, et al., 2009). 

Several small molecule inhibitors were identified possessing 

low micromolar or high nanomolar inhibition activities 

for the WNV and DENV proteases (Bodenreider C, et al., 

2009; Cregar-Hernandez L, et al., 2011; Ekonomiuk D, et 

al., 2009; Johnston P A, et al., 2007; Knehans T, et al., 

2011; Lai H, et al., 2013; Mueller N H, et al., 2008; 

Sidique S, et al., 2009; Tomlinson S M, et al., 2011; 

Tomlinson S M, et al., 2009; Yang C C, et al., 2011). 

Although some of these compounds are potent inhibitors 

(IC50 up to 0.105 μM) for the flavivirus NS3 protease, 

some of them show poor stability with half life of only 

1-2 h in solution (Johnston P A, et al., 2007). In addition, 

the majority of these studies, except the three discussed 

below (Mueller N H, et al., 2008; Tomlinson S M, et al., 

2009; Yang C C, et al., 2011), did not use cell-based 

assays to evaluate the antiviral efficacy of identified 

compounds. In two studies (Mueller N H, et al., 2008; 

Tomlinson S M, et al., 2009), several compounds were 

found to inhibit the growth of WNV and DENV with 

EC50 in the low micromolar range. Furthermore, Yang 

et al. showed that a compound could inhibit the DENV 

NS3 protease with IC50 of 15 μM (Yang C C, et al., 2011). 

Encouragingly, this compound appeared much more 

potent in a replicon-based antiviral assay (EC50 of 0.17 M) 

than in the enzyme-based protease assay, possibly due to 

additional cellular targets.  

All current approaches to identify inhibitors for the 

NS3 protease focus on the protease active site. However, 

only limited success has been achieved. This could be 

because the active site of the flavivirus NS3 protease is 

quite flat and highly charged (Aleshin A, et al., 2007; 

Assenberg R, et al., 2009; Chandramouli S, et al., 2010; 

Erbel P, et al., 2006; Luo D, et al., 2008; Luo D, et al., 

2010; Luo D, et al., 2008; Robin G, et al., 2009), which 
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makes it difficult to find small-molecule inhibitors of the 

NS2B/NS3 protease. Therefore, alternative approaches 

should be considered. Notably, the flavivirus NS3 protease 

requires NS2B as a co-factor for function. Therefore, the 

NS2B-NS3 association site may be targeted for identification 

and development of compounds that inhibit flavivirus 

NS3 protease function by blocking NS2B-NS3 association. 

The crystal structures of the NS2B/NS3 complex (Aleshin 

A, et al., 2007; Assenberg R, et al., 2009; Chandramouli 

S, et al., 2010; Erbel P, et al., 2006; Luo D, et al., 

2008; Luo D, et al., 2010) and ample data from functional 

studies (Chambers T J, et al., 2005; Chappell K J, et al., 

2006; Chappell K J, et al., 2008; Niyomrattanakit P, et al., 

2004; Radichev I, et al., 2008) provide solid bases for 

HT screening of compound libraries to identify allosteric 

inhibitors. Currently, this approach has not been 

extensively explored. Only two reports indicated that 

a non-competitive inhibitor was identified, through a 

protein-based HTS assay, to have high potency against the 

NS3 protease, although one of the compounds was very 

unstable in solution (Johnston P A, et al., 2007; Pambudi 

S, et al., 2013). Docking experiments suggested that the 

compound binds to a site on the NS3 surface that may 

interfere with the binding between NS3 and the cofactor 

NS2B (Johnston P A, et al., 2007; Pambudi S, et al., 

2013). Although a crystal structure of the inhibitor-NS3 

complex is required to confirm the mode of action of this 

type of inhibitor, in vitro virus inhibition studies indicated 

that the compound identified by Pambudi et al. that 

targets the NS2B-NS3 interactions can efficiently inhibit 

all four serotypes of DENV with EC50 of 0.74-4.92 µM 

(Pambudi S, et al., 2013). This compound also showed 

moderate inhibition activity toward YFV, indicating a 

potentially broad antiviral spectrum. Mutagenesis studies 

further revealed that mutations of DENV4 and YFV 

residues that were predicted to interact with the inhibitor 

candidate affected the sensitivity of viruses to this 

compound (Pambudi S, et al., 2013). These results 

strongly support the hypothesis that the interaction 

between NS2B and NS3 is a valid therapeutic target for 

anti-DENV drugs and argue that greater effort should be 

put towards developing allosteric inhibitors targeting the 

NS2B-NS3 interactions.  

 

Future directions 

Historically, the most straightforward approach to 

developing inhibitors of an enzyme target has been to 

screen for compounds that competitively bind the 

enzyme’s active site and displace native substrate. The 

advantage of such an approach is that characterization of 

the properties of a particular enzyme’s substrate is often a 

sufficient starting point for selecting compounds that 

mimic or exceed the substrate in its affinity for the enzyme. 

Unfortunately, this approach might be unlikely to yield 

effective compounds in the case of flavivirus NS2B/NS3 

protease for three reasons: First, NS2B/NS3 has a flat and 

hydrophilic active site which decreases the likelihood that 

compounds can bind specifically with high affinity. 

Second, the NS2B/NS3 active site is similar enough to 

those of host serine proteases that toxic effects in the host 

are likely for many compounds, as has been observed in 

the case of aprotinin. Third, the active site preferentially 

binds positively charged moieties; this charge can have 

deleterious effects on compound bioavailability.  

In addition, lessons should be learned from the 

development of active site inhibitors for the HCV 

protease. Although two HCV protease substrate-based 

inhibitors were developed, resistant mutations occurred 

quickly (Wyles D L, 2013). This is because the active site 

of the HCV protease is shallow and solvent exposed. The 

featureless property of the active site of the HCV protease 

implies that inhibitors would rely on relatively few 

interactions with the enzyme for tight binding, resulting in 

a low barrier to resistance and extensive cross-resistance 

(Romano K P, et al., 2010; Wegzyn C M, et al., 2012). It 

has been reported that as few as a single key mutation 

resulted in a significant loss of inhibition and cross-resistance 

(Romano K P, et al., 2010; Wyles D L, 2012; Wyles D L, 

2013). Similar to that of the HCV protease, the active site 

of flavivirus NS2B/NS3 protease complex is also flat and 

featureless, in addition to the hydrophilic nature. Therefore, 

potential drug resistance should be taken into account, 

when development of active-site inhibitors for flavivirus 

protease complex is considered.  

Fortunately, the solved crystal structures of flavivirus 

protease in both substrate bound and unbound states has 

yielded mechanistic insight into protease function. Details 

of the interaction of the NS2B cofactor, critical for 

enzyme function, with NS3 have suggested an allosteric 

approach to inhibition through disruption of NS2B/NS3 

binding. Lead compounds developed by this approach are 

less likely to have the drawbacks observed with active site 

inhibitors, and are amenable to both computational and 

HTS screening methods. In the future, this “structure-guided” 

approach may suggest additional allosteric sites in 

flavivirus protease and has the potential to open broad 

avenues to drug discovery in other disease target proteins.  
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