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Bacteriophage therapy against Enterobacteriaceae
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The Enterobacteriaceae are a class of gram-negative facultative anaerobic rods, which can cause a 
variety of diseases, such as bacteremia, septic arthritis, endocarditis, osteomyelitis, lower respiratory 
tract infections, skin and soft-tissue infections, urinary tract infections, intra-abdominal infections and 
ophthalmic infections, in humans, poultry, animals and fi sh. Disease caused by Enterobacteriaceae 
cause the deaths of millions of people every year, resulting in enormous economic loss. Drug 
treatment is a useful and effi cient way to control Enterobacteriaceae infections. However, with the 
abuse of antibiotics, drug resistance has been found in growing number of Enterobacteriaceae 
infections and, as such, there is an urgent need to find new methods of control. Bacteriophage 
therapy is an efficient alternative to antibiotics as it employs a different antibacterial mechanism. 
This paper summarizes the history of bacteriophage therapy, its bacterial lytic mechanisms, and the 
studies that have focused on Enterobacteriaceae and bacteriophage therapy.
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INTRODUCTION

The Enterobacteriaceae are a class of gram-negative 
bacteria. Within this family, all bacterial species have 
been implicated in bloodstream, cholangitis, peritonitis 
and other intra-abdominal infections (Paterson, 2006). 
  Additionally, Escherichia coli often causes urinary tract 
infections; Klebsiella pneumoniae has been regarded 
as an important cause of  pneumonia; Salmonella en-
terica produces gastroenteritis, and subsequently in-
vasive infection in some patient; and Shigella strains 
could cause shigellosis, which often occurs in epidemic 
form and causes considerable morbidity and mortali-
ty (Donnenberg, 2002; Paterson, 2006; Phalipon and 
Sansonetti, 2007; Verma et al., 2010). Unfortunately, 
emerging drug resistance is a serious problem in han-
dling Enterobacteriaceae infections, and threatens to 
create pan-resistant species (Falagas et al., 2010). There 
is a pressing need to find alternative ways to control 

Enterobacteriaceae infections, and one of the efficient 
methods is bacteriophage therapy.

Bacteriophage therapy has a long history, which orig-
inated in the early 20th century. Since the discovery of 
penicillin and other antibiotics, with their easy use and 
notable effects in treating microbial related diseases, little 
attention has been paid to bacteriophage therapy for nearly 
half a century (Burrowes et al., 2011). However, due to 
the abuse of antibiotics, a greater number of pathogenic 
bacteria becoming resistant to drugs, resulting in great 
threat to human health (Merril et al., 2003). In China, the 
situation is more serious. Susceptibility rates of clinical-
ly isolated Enterobacteriaceae declined by about 30% 
against the new generations of cephalosporins from 2002 
to 2009; meanwhile, there was a rapid increase in the oc-
currence of extended-spectrum β-lactamases, especially 
for the E. coli strains (from 20.8% in 2002 to 64.9% in 
2009) (Yang et al., 2010). Three reasons lead to this sit-
uation: the fi rst was the abuse of antibiotics; the second 
was the lack of antibiotics with new antibacterial mech-
anisms; and the third was the investment atrophy for 
 the d  evelopment of new antibiotics (Sulakvelidze et al., 
2001). More seriously, t  he rate of development of new 
antibiotics is slower than t  he rate of the appearance of 
antibiotic resistance; therefore, the prospect of new kinds 
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of drugs for clinical use is not optimistic. These realities 
have stimulated researchers in the study of bacteriophage 
therapy, which has met with great progress (Sulakvelidze  
et al., 2001).

HISTORY OF PHAGE THERAPY

The history of phage therapy started with phage dis-
covery. Briefly, Hankin first reported the presence of 
an antibacterial activity against Vibrio cholera in 1896 
(Hankin E, 1896). Two years later, Gamaleya discov-
ered the same phenomenon when working with Bacillus 
subtilis (Samsygina and Boni, 1984; Sulakvelidze et al., 
2001). Twort first reported the discovery of plaque in 
plates during the culture of Staphylococcus aureus, and 
explained it as a viral infection in 1915 (Twort, 1915). 
I  n 1917, d'Herelle proved the phages therapy (d'Herelle, 
1917). He used phages to treat Shigella strains isolated 
from patients with dysentery after which small and clear 
areas appeared on the agar plates. He proposed that the 
phenomenon was due to parasitizing bacteria caused 
by virus infection. The name “bacteriophage” was also 
proposed by d'Herelle; it was derived from the words 
“bacteria” and “phagein” (d'Herelle, 1917; Summers, 
1999). Another important contribution by d'Herelle was 
that, he fi rmly promoted the idea that phages were live vi-
ruses, but not “enzymes” as many researchers thought in 
his era. The research and application of bacteriophages 
was started thereafter. In 1919, a boy with dysentery in 
Paris was treated with d'Herelle’s anti-dysentery phage 
and recovered within a few days. Soon after, three pa-
tients with bacterial dysentery were also recovered after 
being treated with d'Herelle’s anti-dysentery phage, which 
confirmed the efficacy of phage therapy. Unfortunately 
these studies were not reported. T  he fi rst report of phage 
therapy came in 1921 when Bruynoghe and Maisin 
used bacteriophages to treat staphylococcal skin disease 
(Bruynoghe  and Maisin, 1921; Payne et al., 2000). In 
1932, East European scientists identified the scientific 
dosage of phage based on abundant animal and human 
tests. Thereafter, several companies, such as the Parke-
Davis Company and Eli Lilly and Company, began active 
commercial production of phages against various bac-
terial pathogens. In China, phage therapy was started in 
1955 when Si et al. successfully used bacteriophages to 
treat Shigella dysenteriae (Si, 1955). However, in these 
early studies, the phages used had a narrow host range, 
low purity and instability, which limited the application 
of phage therapy (Qian et al., 2007).

THE BACTERIOLYTIC MECHANISM

Bacteriophage therapy is the therapeutic use of phages 
to split pathogenic bacteria. After adsorption to bacteria, 

phages start the process of bacteriolysis. According to 
the requirement of e  ndolysin or not, host cell lysis mech-
anisms can be divided into two basic modes. One mode 
depends on the lysozymes produced by phages with 
dsDNA such as phages K and T4 to split bacteria; the 
other mode does not require the lysozymes such as phage 
MS2 with ssRNA and phage φX174 with ssDNA (Young, 
1992). Hense, there are two basic types of bacterial lytic 
mechanisms.

Lysozyme independent lysis system
This type of bacteriophages lacks the genes encoding 

lysozymes, and they split host strains by synthesizing 
proteins to inhibit the host cell wall biosynthesis, leading 
to lysis of host cells during growth. E. coli ssRNA phage 
Qβ encodes a protein A2 and binds to protein MurA, an 
enzyme that catalyzes the fi rst step in cell wall synthesis, 
preventing catalysis by occluding phosphoenolpyruvate 
from accessing the active site (Reed et al., 2012). The 
ssDNA phage φX174 encodes a membrane protein 
E, which inhibits the enzyme activity of MraY and 
results in host cell lysis (Tanaka and Clemons, 2012). 
MraY catalyzes the first membrane-localized step for 
the synthesis of peptidoglycan precursor (Tanaka and 
Clemons, 2012). During this type of lysis, the host cell 
wall forms small lesions, and leaves the ghost or large 
cell debris at last (Young, 1992).

Lysozyme dependent lysis system
Other than the lysozyme independence of some bac-

teriophages, most bacteriophages have dsDNA encode 
lysozymes to crack the host cells. The dsDNA bacterio-
phages belong to the order Caudovirales, and account 
for about 95% of all the bacteriophages discovered 
(McAuliffe et al., 2007). This type of phage splits the 
host cells by expressing two t  ypes of lysozymes, holins 
and lysins.

Bacteriophage-encoded holins are a diverse group of 
membrane proteins. Holi  ns control the transmembrane or 
activity of phage-encoded endolysins to degrade the host 
cell walls, and thereby initiate the bacteriolytic process 
as the “lysis clock” (Young and Bläsi, 1995). Based on 
structural difference, Young et al. classifi ed phage holin  s 
into three groups, class I, II and III (Figu re 1) (Young 
and Bläsi, 1995).

The t ypical class I holin is S105 coded by the S gene 
of phage λ, which contains 105 amino acids, and forms 
three transmembrane domains (TMDs) (Gründling et al., 
2000). The zwitter  ionic and non-ionic detergents permit 
S105 to form oligomers, and the oligomers form ring-
shaped structures (Savva et al., 2008). The ring has an 
external diameter of 23 nm, an inner diameter of 9 nm 
for the upper ring and 8 nm for the lower ring (Savva et 
al., 2008). The 8 nm inner diameter of the ring is large 
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enough for the movement of endolys  in R of phage λ to 
the periplasm where it attacks the host cell wall. Studies 
also show that the amnio acid mutation of S105 could 
affect the lysis time (Gründling et al., 2000).

The class II holins have two TMDs, which usually 
have a length of 65 to 95 amino acids (Shi et al., 2012). 
The S21 protein from lambdoid   phage 21 is a holin of this 
type (Pang et al., 2009). In the early stage of cytoplasmic 
membrane damage, both the N- and the C-terminus of 
S21 are in the cytoplasm, and form small membrane holes 
that depolarize the membrane, thus class II holins are 
also considered as pinholins, as opposed to large-hole-
forming holins like S105. The lysins of this type of phage 
are exported by the sec system of host cells and accu-
mulate in the inactive form tethered to the membrane by 
an N-terminal SAR (“signal-anchor-release”) sequence 
in the periplasm. The depolarization by S21 leads to the 
release of the lysin from the biolayer and splits cell wall. 
During this process, the holin triggers the  depolarization 
of the cell membrane, and leads to the release of the SAR 
lysin from the bilayer; in this way it is thought to impose 
the timing on the lytic event (Pang et al., 2009; Xu et al., 
2004).

The class III holin has only one TMD, which is highly 
hydrophilic. A representative holin is T protein from 
phage T4 (Ramanculov and Young, 2001). The T pro-
tein of bacteriophage T4, as other holins, has the ability 
to cause the formation of a lethal membrane lesion, 
and allows the phage lysin to target the cell wall. The 
N-terminus of T is in the cytoplasm and acts as mem-
brane lesion; the C-terminus is in the periplasm and func-
tions as the regulator. Moreover, T acts in the vegetative 
cycle like other holins at an accurate programmed time 
(Ramanculov and Young, 2001).

Lysins, also known as endolysins, muralysins, mur-
amidases or virolysins, are highly evolved enzymes to 
digest the bacterial cell wall for the release of phage 
progeny during the final stage of bacteriophage lyt-
ic cycle (Fischetti, 2008). Functionally, four types of 
phage lysins can be classified: endo-β-N-acetylglucos-
aminidase, N-acetylmuramidase, endopeptidase and 
N-acetylmuramoyl-L-alanine amidase (Loessner, 2005; 

Pastagia et al., 2013). The targets of these lysins on host 
cell wall are shown in Figure 2. Due to the high effec-
tiveness and specificity to drugs, the lysins have been 
applied as antibacterial agents (Fischetti, 2008). Lysins 
must perform two basic functions: substrate recognition 
and enzymic hydrolysis (Díaz et al., 1990). Generally, 
the N-terminal domain cleaves specific peptidoglycan 
bonds, such as endo-β-N-acetylglucosaminidase and 
N-acetylmuramidases which hydrolyse glycosidic bonds 
in the glycan strand, endopeptidases cleave the peptide 
bonds of the cross-bridge, and N-acetylmuramoyl-L-
alanine amidases cleave the amide bond connecting 
the glycan moiety and the stem peptide (Pastagia et al., 
2013).

We can see the difference between lysozyme indepen-
dent and dependent lysis systems. Phages with lysozyme 
independent lysis system produce no holins or lysins. 
These phages encode proteins or peptides to inactivate 
the enzymes of synthesis pathways of the host cell wall, 
thus they function only on the cells in the growth stage; 
bacterial ghosts or large debris are left after cell lysis, 
and this mechanism often exists in the ssRNA or ssDNA 
phages. On the contrary, phages with lysozyme depen-
dent lysis system use a combination of holins and lysins 
to split the host cells at any growth stage, the host cells 
are thoroughly lysed; this system is often found in dsD-
NA phages.

As an alternative to antibiotics, bacteriophages have 
a long history of treatment of a variety of bacterial dis-
eases (Sulakvelidze et al., 2001). The following is a 
summarization of studies regarding phage therapy and 
Enterobacteriaceae.

BACTERIOPHAGE THERAPY TARGETED 
AGAINST ENTEROBACTERIACEAE

Escherichia coli
It is estimated by the World Health Organization that 

about 5 million children die each year as a consequence 
of acute diarrhea (Snyder and Merson, 1982). One third 
cases of childhood diarrhea in developing countries are 
caused by E. coli (Albert et al., 1995). Due to its mallea-

Figure 1. Topology structure of phage holins. Phage holins can be divided into three groups, classes I, II and III.
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ble genetic characteristic, E. coli has one of the widest 
spectra of disease of any bacterial species (Donnenberg, 
2002). The E. coli O157 that recently emerged as a major 
food pathogen is a live example (Sharma et al., 2009). 
Furthermore, there is a lack of effective treatment for E. 
coli infections. Oral rehydration acts as the mainstay of 
treatment (Bhan et al., 1994). Countless lives have been 
saved by this simple and inexpensive measure. However, 
it does not affect the natural course of disease or the in-
trinsic activity of anti-bacteria. The use of antibiotics is 
of doubtful value since antibiotic resistance is widespread 
(Savarino et al., 2002).

Bacteriophages have been used to treat E. coli infec-
tions. Smith et al. used a mixture of phages to treat di-
arrhea in calves, piglets and lambs (Smith and Huggins, 
1983). Similar results were achieved among these differ-

ent animals; the diarrhea caused by the enteropathogenic 
E. coli strain was much reduced in vivo, and treatment 
had an ameliorating effect on the course of the disease. 
Recently, studies have also evaluated the safety of phage 
treatment through murine and human tests (Denou et al., 
2009; Sarker et al., 2012). Denou et al. used a T4 co-
liphage to treat E. coli diarrhea by a combination of in 
vitro and in vivo tests (Denou et al., 2009). They selected 
phages based on genome sequencing and bioinformatic 
analysis, and found that the coliphage had a signifi cant 
curative effect and no negative impact or anti-T4 anti-
bodies were present after one month of treatment. Sarker 
et al. selected 9 phages without horizontal gene transfer 
and undesired genes from 99 T4-like coliphages based 
on genome sequencing to produce the cocktail, and gave 
it to 15 healthy adults from Bangladesh; no phage ampli-

Figure 2. Lysins targeted on the peptidoglycan of bacterial cell wall (Adapted from Loessner, 2005). CCWP: ca  r-
bohydrate cell wall polymer; P: phosphate group; LU: linkage unit; m-DAP: meso-diaminopimelic acid; GlcNAc: 
N-acetylglucosamine; MurNAc: N-acetylmuramic acid. 1: Endo-β-N-acetylglucosaminidase; 2: N-acetylmuramidase; 
3: Endopeptidase; 4: N-acetylmuramoyl-L-alanine amidase.
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fi cation or side effects were observed, which might indi-
cate the safety of phage therapy (Sarker et al., 2012).

Salmonella enterica
S. enterica is the Enterobacteriaceae family bacteria 

which can cause human salmonellosis (Paterson, 2006). S. 
enterica can live in the gastrointestinal tracts of birds and 
mammals, which could reptile and survive for a long 
time in environments such as water, soil and kinds of 
foods (Capparelli et al., 2010). Ingestion of food with 
animal feces is the cause of most human cases of salmo-
nellosis. Clinical manifestations of human salmonellosis 
have a wide range, from subclinical gastroenteritis to 
severe bacteremia and meningitis, as well as other forms 
of extraintestinal infections (Angulo et al., 2000). In fact, 
more than 2300 serovars of S. enterica are now known, 
and display great differences in virulence (Heithoff et al., 
2008). Because of the widespread presence of antibiotic 
resistance among S. enterica isolates, the only available 
antibiotics are the fl uoroquinolone and third-generation 
cephalosporins (Angulo et al., 2000), hence there is a 
need for antimicrobial alternatives other than antibiotics.

The phage was fi rstly exploited for classifying S. en-
terica bacteria by its specifi city for bacterial species or 
serovars (Anderson et al., 1977). Recently, phages have 
been used for the control of S. enterica contamination 
(Atterbury et al., 2007; Leverentz et al., 2001; Wall et al., 
2010). Leverentz et al. used Salmonella-specific lytic 
phages to reduce the colony numbers in experimentally 
contaminated fresh-cut melons and apples (Leverentz  et 
al., 2001). They found that the phages could signifi cant-
ly reduce Salmonella populations of melons at different 
temperatures, but did not work well on apples due to the 
low pH, which might affect the phage activity. Atterbury 
et al. tried to reduce Salmonella colonization of broil-
er chickens through the use of host-specific phages 
(Atterbury et al., 2007). Three broad host range phages 
were selected from 232 Salmonella phages. Two of the 
three chosen phages showed an obvious reduction of S. 
enterica serotype enteritidis cecal colonization. Their 
studies also indicated the key factors in the successful 
phage-mediated control of salmonellas were appropriate 
phages and optimization of both the timing and method 
of phage delivery (Atterbury et al., 2007). Wall et al. used 
a phage cocktail to treat small and market-weight pigs, 
and the results showed that the group of pigs with the 
phage cocktail had a signifi cantly reduced ileal Salmonella 
concentrations as well as cecal Salmo  nella concentrations 
(Wall et al., 2010).

Klebsiella pneumoniae
K. pneumoniae is a gram-negative opportunistic patho-

gen, which is often associated with pneumonia, urinary 
tract, bloodstream, and intra-abdominal infections (Verma 

et al., 2010). K. pneumoniae caused bacteremia usually 
leads to significant morbidity and mortality among the 
general population (Tsay et al., 2002). More seriously, 
due to the prevalence of multidrug-resistant K. pneumo-
niae strains, treatment of these infections becomes ever 
more diffi cult (Verma et al., 2009).

Virulent phages specifi c to K. pneumoniae cells have 
been studied to control the infection caused by K. pneu-
moniae (Verma et al., 2009; Chhibber et al., 2008). 
Malik et al. used bacteriophage KØ1 to treat third-degree 
burn wounds of mice administered with a fatal dose of 
K. pneumonia (Malik and Chhibber, 2009). After treat-
ment, a substantial bacterial load decrease was noted 
in the blood, peritoneal lavage, and lung tissue of mice 
compared with those of the control groups. The decrease 
in microbial count was evident via the subcutaneous or 
intraperitoneal bacteriophage therapy. Gu et al. estab-
lished a “step-by-step” approach to take advantage of the 
occurrence of phage-resistant bacteria variants (Gu et al., 
2012). A phage cocktail consisted of three phages was 
established for K. pneumoniae by this method. The phage 
cocktail significantly reduced the mutation frequency 
of K. pneumoniae compared with any single phage, and 
effectively rescued K. pneumoniae bacteremia. Besides, 
the minimal protective dose of the phage cocktail was 
significantly smaller than that of single monophage to 
protect bacteremic mice from lethal K. pneumoniae K7 
infection. Hung et al. treated K. pneumoniae-induced 
liver infection by using an isolated phage φNK5 (Hung 
et al., 2011). The results indicated that a single dose of 
lower than 2 × 108 PFU phages was effective. The mice, 
via intraperitoneal or intragastric treatment, showed an 
elimination of K. pneumoniae from both blood and liver 
tissues compared with those of the control groups. This 
work suggested the low dose of φNK5 is an efficient 
therapeutic agent against K. pneumoniae-induced liver 
infection. Chhibber et al. used phage SS as the agent 
against an experimental model of K. pneumoniae-me-
diated lobar pneumonia in mice (Chhibber et al., 2008). 
A single intraperitoneal injection of 1010 PFU/mL phage 
administered immediately after intranasal challenge of 
108 CFU/mL of K. pneumoniae B5055 was suffi cient to 
rescue K. pneumoniae-mediated respiratory infections. A 
signifi cant protection was observed in infected mice by 
administration of the phage preparation three hours prior 
to intranasal bacterial challenge. However, the phage 
treatment was ineffective even six-hour delay of phage 
administration following the induction of infection. 
Therefore, the results of this study suggested that the 
timing of initial phage therapy after initiation of infec-
tion signifi cantly contributed to the success of treatment. 
Although few phage therapies on human K. pneumonia 
infection have been reported, the studies suggest that 
bacteriophages or bacteriophage cocktails have the poten-
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tial to modulate the infection caused by K. pneumonia.

Shigella strains
Shigella is a kind of small, unencapsulated, non-mo-

tile gram-negative rod bacteria that caused shigellosis in 
humans. There are four species of Shigella pathogenic to 
human: S. dysenteriae, S. boydii, S. sonnei and S. fl exneri 
(Subekti et al., 2001). Shigellosis is a major public-health 
problem in many developing countries, and causes con-
siderable morbidity and mortality (Niyogi 2005; Phalipon  
and Sansonetti, 2007). Shigellosis causes an estimated 
120 million cases and 1.1 million deaths worldwide an-
nually (Niyogi, 2005). Shigella contamination occurs 
mainly through the fecal-oral route, with fomites, food, 
water, insects or direct person to person contact, and the 
infectious dose is as little as 100 bacterial cells (Phalipon 
and Sansonetti, 2007). In addition, secondary transmis-
sion through environmental sources cannot be ignored 
(Levine and Levine, 1991).

Bacteriophage treatment of Shigella originated in 
1917, while d'Herelle fi rst used phages to split Shigella 
strains isolated from several soldier patients with hem-
orrhagic dysentery (d'Herelle, 1917; Summers, 1999). 
One of the most extensive studies was conducted to 
evaluate the utility of therapeutic phages for prophylaxis 
of bacterial dysentery during 1963 and 1964 in Tbilisi, 
Georgia (Babalova et al., 1968). In total, 30,769 children 
between 6 months to 7 years of age were included in the 
study. Of these children, 17,044 on one side of the street 
were given Shigella phages orally, and the remainder on 
the other side of the street were not treated with phages. 
The fi nal results showed that the incidence of dysentery 
of the placebo group was 3.8-fold higher than that of the 
phage-treated group, which indicated the efficiency of 
phage therapy against Shigella strains.

Serratia marcescens
Neonates are commonly infeced with S. marcescens, 

especially immunocompromised neonates of low birth 
weight (Larson et al., 2005). Furthermore, S. marcescens 
has a specifi c affi nity for the central nervous system, and 
meningoencephalitis or a brain abscess with this patho-
gen has a severe neurologic prognosis (Messerschmidt et 
al., 2004). Recently, there have been reports concerning 
multidrug-resistant strains of S. marcescens in pediatrics, 
which make it difficult to treat diseases caused by this 
bacterium with drug therapy (Maragakis et al., 2008).

In 1967, phages were used to infect S. marcescens. 
Iino et al. used a broad host range phage χ to split 20 
of S. marcescens strains (Iino and Mitani, 1967). Their 
results showed that phage χ could only infect the strains 
with fl agella, which indicated the receptor site of phag-
es. Matsushita et al. isolated two phages, KSP90 and 
KSP100, from environmental water that were related 

to the T4-type phage and phiEco32 phage, respectively 
(Matsushita et al., 2009). They extensively studied the 
biological features, DNA features, virion proteins and 
phylogenic relationships of the two phages, and their 
work indicated the therapeutic potential of the phages to 
control S. marcescens infection. Denyes et al. sequenced 
the genome of Serratia bacteriophage η, and have a well 
known about the genome length and structure, as well as 
all the functional CDSs (Denyes et al., 2014). Whether it 
carries virulence genes or not is also clear. This kind of 
work is useful for the application of phages for therapy.

Other strains of Enterobacteriaceae family
Besides the above mentioned Enterobacteriaceae, 

studies of phages related to other Enterobacteriaceae 
such as Edwardsiella (Yasuike et al., 2013), Proteus 
(Lazareva et al., 2001), Erwinia (Born et al., 2011), and 
Citrobacter (Chaudhry, 2014) have also been reported 
recently. These works indicate the practicability of thera-
peutic candidates of bacteriophages.

CONCLUSION

Bacteriophage therapy is an effective way to control 
bacterial infections; it is superior to antibiotic treatment 
in the following aspects. The phages are capable of in-
creasing in numbers specifically where hosts are locat-
ed during the bacterial-killing process, and contribute 
to establishing the phage dose; in addition, the cost of 
agent production is relatively low (Abedon and Thomas-
Abedon, 2010). Most phages have a specifi c host range, 
which makes them split the target pathogenic bacteria 
while leaving minimal disruption of normal fl ora (Gupta 
and Prasad, 2011). By contrast, many chemical anti-
biotics have broader spectrums of activity, which may 
be prone to inducing super infections (Carlton, 1999). 
Unlike antibiotics, which can be toxic, phages display 
little or no toxicity to the fl ora and environment (Bentley 
and Bennett, 2003).

Bacteriophage therapy also has limitations. One is the 
safety problem. All of the phages in a given cocktail will 
need to be appropriately characterized before they can 
be used in clinical treatment. Fortunately, the rapid im-
provement of genome sequencing technologies assures 
the safety of phages used in therapy approaches. Another 
problem is the narrow host range; however, this limita-
tion can be counteracted by the use of recently developed 
and improved phage cocktails. The third limitation is the 
instability of the phage therapeutic agent; further study 
is needed to improve and prefect this factor. The forth 
problem is the phase-resistance developed by bacteria 
during their co-evolution with phages. Disputes focus 
on whether the same result will appear in the future, as 
bacteria will develop multi-phage resistance as the same 
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as the abuse of antibiotics. This is an important problem 
and needs future studies.
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