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REVIEW

Survival and proliferation of the lysogenic bacteriophage CTXΦ 
in Vibrio cholerae

Fenxia Fan, Biao Kan
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Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, 
China

The lysogenic phage CTXΦ of Vibrio cholerae can transfer the cholera toxin gene both horizontally 
(inter-strain) and vertically (cell proliferation). Due to its diversity in form and species, the 
complexity of regulatory mechanisms, and the important role of the infection mechanism in 
the production of new virulent strains of V. cholerae, the study of the lysogenic phage CTXΦ 
has attracted much attention. Based on the progress of current research, the genomic features 
and their arrangement, the host-dependent regulatory mechanisms of CTXΦ phage survival, 
proliferation and propagation were reviewed to further understand the phage’s role in the 
evolutionary and epidemiological mechanisms of V. cholerae.
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INTRODUCTION

CTXΦ is a single-stranded filamentous DNA phage 
that can be horizontally transferred among Vibrio choler-
ae strains (Ochman et al., 2000; Waldor and Mekalanos, 
1996). The gene ctxAB, carried by CTXΦ, encodes the 
cholera toxin (CT), which is the main causative factor of 
cholera. CTXΦ can be integrated into the chromosome 
of V. cholerae through lysogenesis. The genome size and 
the overall arrangement of CTXΦ genes in V. cholerae 
are very similar to fi lamentous bacteriophages f1, fd, and 
M13 in Escherichia coli that   have different F pili spec-
ificities (Russel 1995; Waldor and Mekalanos, 1996). 
The typical genome size of CTXΦ is approximately 7 kb 
and consists of two parts: the RS2 sequence (4.6 kb in 
size) and the core region (2.4 kb in size; Figure 1). Three 
genes (rstR, rstA, and rstB) and two spacers (ig-1 and ig-
2) are present in the RS2 region. RstA, encoded by rstA, is 

related to CTXΦ replication, while RstB, encoded by rstB, 
is associated with the site-specifi c integration of CTXΦ 
into the chromosome of V. cholerae. In the CTXΦ core 
region, psh, cep, gIIICTX, ace, zot, ctxAB, and other genes 
are encoded; the fi rst four of which are associated with 
the assembly and structural formation of phage particles. 
gIIICTX encodes pIII, which is related to the recognition 
of V. cholerae surface receptors. Proteins encoded by zot 
and ace genes function in the formation of phage parti-
cles. ctxAB genes are not associated with phage forma-
tion; instead they encode toxin subunits A and B, which 
form the A1B5 type CT protein complex. After ctxAB-car-
rying CTXΦ infects V. cholerae cells, it integrates its 
DNA into the chromosome of V. cholerae at the attB (dif) 
integration site to facilitate the horizontal gene transfer 
of ctxAB among V. cholerae strains and the subsequent 
generation of new virulent strains.

THE DISCOVERY OF NON-CTXAB-CONTAINING 
CTXΦ AND CTXΦ CLASSIFICATION

In 1999, while analyzing   the genomic features of CTXΦ 
of El Tor type V. cholerae, we discovered that some 
strains did not carry the ctxAB toxin genes, though they 
still encoded the other genes of the CTXΦ genome. 
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Furthermore, when drawing the physical maps of the 
CTXΦ genomes of the different strains, we discovered a 
phage strain that originated from El Tor type V. cholerae that 
carried only a classical-type rstR gene sequence without the 
ctxAB toxin genes. This unique genome was temporar-
ily named nct-CTXclassΦ (Biao, 1999; Kan et al., 1999). 
Other studies also identifi ed the genome structure of the 
lysogenic phage and named it pre-CTXΦ (Boyd et al., 
2000). In this article, the non-ctxAB-containing CTXΦ 
phages are collectively referred to as pre-CTXΦ, which 
is the precursor form of CTXΦ. Pre-CTXΦ evolved into 
CTXΦ after acquiring the ctxAB genes.

As more strains were studied, more CTXΦ genomes 
with various gene sequence characteristics were identi-
fi ed and these formed the CTXΦ family. Based on var-
ious characteristics, including serogroup, biotype, vari-
ations in the rstR gene and ig-2 sequences, and whether 
the ctxAB genes were carried, these strains were classi-
fi ed into CTXclassΦ (Faruque et al., 2000) and pre-CTX-
classΦ (Biao et al., 2002), derived from the classical 
strain of V. cholerae, CTXETΦ (Waldor and Mekalanos, 
1996) and pre-CTXETΦ from the El Tor strain, and 
CTXcalcΦ (Davis et al., 1999) from the O139 strain. In 
addition to CTXETΦ, CTXclassΦ and CTXcalcΦ carried 
rstRET, rstRclass, and rstRcalc (Davis et al., 1999; Davis and 
Waldor, 2000c; Waldor and Mekalanos, 1996), and more 
gene sequences of the rstR gene, including rstR-4 **, 
rstR-5, rstR6, rstR-232, and rstRZJ, were discovered  (Li 
et al., 2003; Maiti  et al., 2006; Mukhopadhyay et al., 
2001; Wang et al., 2014). Moreover, our laboratory also 
discovered CTXΦ and pre-CTXΦ genomes that carried 
different types of rstR sequences in strains of the O1 and 
O139 serogroups and the non-O1/non-O139 serogroups 
((Li et al., 2014) and unpublished data).

HOST-DEPENDENT SURVIVAL AND 
PROLIFERATION OF CTXФ PHAGES

CTXΦ is a lysogenic bacteriophage that does not kill 
the host bacteria; it is similar to the common infection 
process (Rasched and Oberer, 1986). After undergoing 
the processes of recognition of the surface receptor of 
V. cholerae, DNA injection, and chromosomal inte-
gration, CTXΦ phages exist inside V. cholerae cells 
in lysogenic or plasmid replication forms (RFs). They 

also undergo the process of production and release of 
new and mature phage particles, which in turn infect 
new hosts to complete the life cycle. These processes 
require not only proteins that are encoded by CTXΦ 
genes, but also the expression of related genes outside 
the CTXΦ genome in the V. cholerae chromosome. 

The recognition of TCP pili receptors  by CTXΦ 
phage

TcpA, encoded by the tcpA gene of V. cholerae, is the 
major subunit of toxin-coregulated pilus (TCP), which 
not only plays important roles in the V. cholerae infection 
process as an adherence and colonizing factor (Herrington 
et al., 1988; Tacket et al., 1998), but also as the receptor 
of CTXФ phage, as indicated by evidence from genetic 
studies (Waldor and Mekalanos, 1996). Strains that are 
sensitive to CTXФ all had TCP pili. The TolQRA pro-
tein complex also plays an important role in the CTXΦ 
phage infection process (Heilpern and Waldor, 2000). It 
has been proposed that TolQRA complexes function in 
periplasm or intima based on Ff phage in E. coli (Webster, 
1991). The TolA protein might play a role during infec-
tion as the second receptor of the CTXΦ phage. When 
filamentous fd phage infects E. coli, pIIIfd protein, en-
coded by fd, mediates the infection of fd as a ligand to 
recognize E. coli fi mbriae. In CTXΦ, there is no protein 
homology to the pIIIfd sequence. However, based on the 
position of gIIICTX in the CTXΦ genome and its similar 
sequence length to pIIIfd and through functional analysis, 
it has been postulated that pIIICTX might exercise a func-
tion similar to that of pIIIfd (Heilpern and Waldor, 2003) 
and that it might act as a ligand to combine with TCP 
receptor to mediate CTXΦ infection. The process of the 
interaction between CTXФ and the surface receptor in 
bacterial cells likely requires two steps: fi rst, pIIICTX com-
bines with the end of the TCP pili (Heilpern and Waldor, 
2003), which subsequently leads to the contraction of the 
TCP so that the phage particles are closer to or even pass 
through the outer membrane of the bacterium (Russel et 
al., 1988; Sun and Webster, 1987). The TCP, as the fi rst 
receptor, pulls the phage particle closer, which is partic-
ularly advantageous for phage infection, as it allows the 
host to effectively capture a specifi c phage (Riechmann  
and Holliger, 1997) while promoting effective binding 
between the phage and the second receptor TolA (Click 

Figure 1. The genomic structure of CTXΦ in Vibrio cholerae N16961.
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and Webster, 1997; Riechmann and Holliger, 1997). 
TolQ and TolR also play important roles in this process, 
likely by forming a channel to transport some necessary 
substances through the endometrium (Webster, 1991).

Studies have identified polymorphisms in pIIICTX 
(Bhattacharya et al., 2006; Boyd et al., 2000) and TcpA  
(Boyd and Waldor, 2002; Kumar et al., 2011; Li et al., 
2003; Wang et al., 2014) protein sequences, with high-
ly variable regions in the interacting protein domains 
(Heilpern and Waldor, 2003; Kirn et al., 2000). It has 
also been determined that a new tcpA allele exists in the 
toxigenic non-O1 non-O139 serogroups (O141, O8, O37) 
of V. cholerae and that the groups were sensitive to the 
fi lamentous phage CTXΦ (Boyd and Waldor, 2002), sug-
gesting that the toxigenic non-O1 non-O139 serogroups 
may have evolved from the non-toxigenic strains through 
TCP with new functionality to acquire CTXΦ. Faced 
with the selection pressure of survival and the environ-
ment, V. cholerae evolved to form various types of TCP 
and became dominant strains because they carried cer-
tain specific TcpA sequences when facing the selection 
pressure of the environment. It has been reported that 
variation exists in the V. cholerae infection capabilities of 
CTXΦ carrying different types of TcpA sequences (Liu et 
al., 2005). The V. cholerae infection rate for CTXΦ was 
higher in vivo than in vitro (Liu et al., 2005), and the types 
of TCP from classical strains were different from those 
from the El Tor and O139 strains. It was noted that the 
phage’s infection capabilities varied for different strains; 
the reason for this variance is currently unclear but is 
presumably related to phage immunity and the expres-
sion of TCP fi mbriae. Perhaps in an in vivo environment, 
the non-toxigenic strains of V. cholerae are more easily 
converted to toxigenic strains.

The integration, dissociation, and replication of 
CTXΦ phage in host cells

The integration and dissociation of CTXΦ phage on 
the host chromosome. The dissociation of lysogenic 
CTXΦ phage from, and its re-integration into, the host 
chromosome are both dependent on RecA (Kamruzzaman  
et al., 2014; Quinones et al., 2005). CTXΦ phage injects 
single-stranded DNA (ssDNA) into the host cell and 
uses the host polymerase to synthesize the complemen-
tary strand to form double-stranded DNA (dsDNA). 
This is either present in the form of circular plasmid 
pCTX or is integrated into the chromosome through the 
attP sequence in the CTXΦ phage genome and the attB 
sequence in the homologous region of the host chromo-
some, mediated by the host tyrosine recombinases XerC / 
XerD (Huber and Waldor, 2002). The phage then exists 
in its lysogenic form (Huber and Waldor, 2002; Waldor  
and Mekalanos, 1996). For V. cholerae strains that lack 
the CTXΦ integration site, the phage DNA exists in the 

form of plasmid pCTX. Genetic evidence indicates that 
RstB is also required for CTXΦ integration into the chro-
mosome, but the exact molecular mechanism remains a 
mystery (Waldor et al., 1997). The RstB sequence has no 
homology to any proteins with known function; however, 
it has a similar sequence as LOOP, which binds to DNA 
and also exists in ssDNA-binding proteins (SSBs) en-
coded by some phage genome sequences. Some studies 
have found that SSB is benefi cial to ssDNA stability be-
fore the ssDNA phage is packaged to become the mature 
phage particle (Russel, 1995).

The dissociation of lysogenic phage CTXΦ DNA 
from the chromosome has not yet been observed under 
natural environmental or growth conditions. However, it 
was recently reported that the CTXΦ genome sequence 
is adjacent to the RS1 sequence in some toxigenic El 
Tor strains of the O1 and O139 groups of V. cholerae. 
RS1 is a satellite phage related to CTXΦ, whose spread 
and proliferation require relevant proteins encoded by 
the CTXΦ genome, meaning that CTXΦ is the helper 
phage of RS1. Compared to RS2, the RS1 sequence only 
encodes one extra rstC gene (Davis et al., 2002); all the 
remaining genes are identical. The RS1 sequence is gen-
erally packaged together with the CTXΦ DNA sequence 
into phage particles (Davis et al., 2002). When strains 
were superinfected with RS1 phage and incubated inside 
small intestine ligation segments in adult rabbits, the 
RS1 phage caused an unstable arrangement of lysogenic 
CTXΦ-RS1 on the chromosome, and lysogenic CTXΦ (in 
some cases, together with TLC or RS1) was dissociated 
from the chromosome, resulting in a new non-toxigen-
ic V. cholera; a process that was also RecA-dependent. 
Over-expression of the RstC protein alone in toxigenic 
El Tor strains of the O1 and O139 groups was suffi cient 
to cause a similar phenomenon (Kamruzzaman et al., 
2014), which led to the discovery of a new function 
of the RS1 phage. The RS1 phage was different from 
CTXΦ infection and did not result in the phenomenon of 
superinfection immunity. The newly produced non-toxi-
genic V. cholerae strain still contained the dif phage 
integration site and could be infected and re-integrated 
with a new CTXΦ phage (Kamruzzaman et al., 2014). 
The El Tor strain that caused the recent seventh cholera 
pandemic was infected with a CTXΦ that carried rstRclass 
genes (Ansaruzzaman et al., 2004; Nair et al., 2002). 
The emergence of these new types of strains might re-
sult from the loss of CTXΦ in the O1 El Tor strain and 
then the acceptance of a new type of phage as a recipient 
strain. Although no evidence has yet supported the idea 
that CTXclassΦ can be induced to dissociate from the 
chromosome, it has been demonstrated that, under the 
effect of chitin-induced transformation (Meibom et al., 
2005), non-toxigenic O1 El Tor V. cholerae could take 
the CTXclassΦ DNA fragment and integrate it between the 
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attB and attP sites (the intact integration sites left behind 
after the dissociation of CTXΦ) (Kamruzzaman et al., 
2014).

The replication of CTXΦ phage in host cells. Adjacent 
to the CTXΦ genome, the chromosomes of some V. 
cholerae strains contain the RS1 sequence. The origin of 
replication of the CTXΦ phage locates within the ig-1 
sequence, at which RstA causes breakage to generate a 
single-stranded nick that results in the occurrence of a 
3' end of DNA (Moyer et al., 2001; Waldor et al., 1997), 
which the host DNA polymerase uses as a template to 
initiate DNA synthesis (Moyer et al., 2001). When reach-
ing the next nick at the origin of replication, the DNA 
synthesis stops, and the synthesis of the ssDNA that is 
used in the packaging of new CTXΦ phage particles 
completes (Moyer et al., 2001). After the newly synthe-
sized CTXΦ phage DNA is packaged into the protein 
capsid, the mature phage particle progeny are assem-
bled. Classical O1 V. cholerae cannot produce infectious 
CTXΦ phage particles, likely due to one of two possi-
bilities: either the CTXΦ phage genome is present alone 
on the chromosomes of these strains (i.e., RS1 sequences 
are absent from the adjacent sequences) or two incom-
plete phage genomes reside on the chromosome in tan-
dem (Davis and Waldor, 2000c), which indicates that the 
arrangement of CTXΦ-RS1 is critical for the generation 
of mature progeny phage.

The assembly and release of CTXΦ phage. Similar 
to other fi lamentous phages, the extracellular release of 
CTXΦ does not cause host cell lysis. PI, the membrane 
protein of Ff phage, plays an important role in the assem-
bly and secretion of Ff phage; the Zot protein of CTXΦ 
phage is homologous to PI (Koonin, 1992; Waldor and 
Mekalanos, 1996) and contains an ATPase domain, 
which perhaps provides energy for the assembly and 
release of CTXΦ phage. CTXΦ is secreted through the 
channel made by the outer membrane protein   EpsD, en-
coded by the host’s T2SS secretion system (Davis et al., 
2000a). EpsD is an important constituent of T2SS in V. 
cholerae. T2SS consists of 15 protein types and is related to 
the secretion of toxin CT, hemagglutinin-protease, chitinase, 
and other proteins (Connell et al., 1998; Sandkvist, 2001; 
Sandkvist et al., 1997). However, CTXΦ phage release 
only involves EpsD (Davis et al., 2000a).

After the integration of CTXΦ onto the V. cholerae 
chromosome, the phage makes use of proteins encoded 
by the host genome and undergoes replication, assem-
bly, and secretion to complete its life cycle, but it does 
not cause the lysis and death of V. cholerae cells. It also 
does not affect the growth of the bacterium; in contrast, 
the CTXΦ and V. cholerae co-evolve. CTXΦ carries the 
CT gene, and CT causes diarrhea in infected patients to 
promote the propagation and proliferation of V. cholerae, 
indicating that the relationship between CTXΦ and its 

host V. cholerae is mutually benefi cial.
The regulatory mechanisms of CTXΦ phage induc-

tion. The promoter (PrstA) of the rstA gene inside the 
RS2 region regulates the overall transcription of genes 
that are associated with CTXΦ phage replication and 
morphogenesis. The direction of rstR transcription is op-
posite to that of rstA, and there is a spacer sequence (ig-
2) between rstR and rstA, which contains PrstA and the 
rstR operon. The RstR protein binds to the ig-2-binding 
region upstream of the rstA open reading frame (ORF) 
to inhibit rstA transcription to maintain CTXΦ lysogen-
esis (Kimsey and Waldor, 1998; Waldor et al., 1997). 
In addition to phage-encoded RstR, the host’s SOS re-
action regulatory protein LexA can also bind to PrstA to 
inhibit the transcription of downstream genes (Kimsey 
and Waldor, 2009; Quinones et al., 2005). Under normal 
culture conditions, both LexA and RstR bind to PrstA to 
inhibit its transcription (Quinones et al., 2005). Acting 
in a tetramer, RstR binds to three different sites O1, O2, 
and O3 (each site approximately 50 bp in size) of the 
RstA gene promoter, with the tightest binding at the O1 
site and relatively weak binding at the O2 and O3 sites. 
The O2 binding site overlaps the −10 to −35 nt positions 
of the RstR promoter (PrstR), suggesting that RstR may 
inhibit its own transcription (Kimsey and Waldor, 2004). 
The SOS reaction conditions that cause DNA damage 
will increase the induction of CTXΦ phage particles 
(Quinones  et al., 2005). The SOS reaction caused by mi-
tomycin C and ultraviolet (UV) light leads to increased 
activity of the auxiliary protease RecA, which is related 
to the DNA repair pathway, which in turn causes the 
self-degradation of LexA, the global regulatory factor 
of the SOS reaction. After LexA degradation, the RstR 
protein level is reduced, which lifts the transcriptional re-
pression on RstA  (Quinones et al., 2005) and ultimately 
leads to increased production of CTXΦ phage (Quinones  
et al., 2005; Waldor and Mekalanos, 1996). Studies have 
shown that after the mitomycin C-induced inhibition on 
PrstA was lifted, the mRNA expression of ctxA increased 
by seven-fold (Quinones et al., 2005). However, the in-
crease in the CTXΦ phage particles elicited from the 
SOS response was limited (Quinones et al., 2005). The 
molecular mechanism of RstR’s inhibition on RstA tran-
scription still needs further investigation. 

While RS1 utilizes proteins encoded by CTXΦ to as-
semble phage particles, RstC also plays a positive role in 
the induction of phage production. RstC directly binds to 
RstR to block the binding of RstR to PrstA and ultimately 
assists in CTXΦ proliferation (Davis et al., 2002); in oth-
er words, RS1 is a helper phage to CTXΦ. Meanwhile, 
PrstA controls RstC expression; thus, the factors that can 
enhance the RstA transcription level will also lead to en-
hanced RstC expression. Meanwhile, the enhanced PrstA 
activity will also lead to up-regulated transcription of the 
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downstream genes of ctxAB to achieve the RstC’s regu-
lation on virulence genes (Davis et al., 2002). However, 
the regulation by genes from CTXΦ itself on ctxAB tran-
scription is limited (Davis et al., 2002). Stx toxin, encod-
ed by the stx gene in the λ phage of E. coli, is the major 
causative agent of enterohemorrhagic E. coli (EHEC), in 
which the production and release of Stx toxin is mainly 
dependent on inhibitors encoded by the λ phage itself 
(Neely and Friedman, 1998). Different from the regula-
tion of the stx gene, the regulation of the ctxA gene main-
ly relies on the regulation of the promoter by the cell 
transcription factors ToxR, ToxT, and TcpPH, which are 
outside of CTXΦ (Krukonis and DiRita, 2003).

The RS1 sequence was present in the recently prev-
alent O1 El Tor and O139 strains but absent in the O1 
classical strain that caused the sixth cholera pandemic 
(Davis et al., 2000b; Waldor et al., 1997). It is possible 
that the acquisition of the rstC gene conferred an advan-
tage to the recently prevalent strains (Dziejman et al., 
2002). In summary, there exists a fascinating and mutual-
ly supplementary relationship between the satellite phage 
RS1 and CTXΦ; proteins encoded by CTXΦ are required 
for the formation of phage particles for RS1, while RS1 
is benefi cial to CTXΦ during both its dissociation from 
the chromosome and proliferation. 

THE ARRANGEMENT OF CTXΦ PHAGE ON THE 
HOST CHROMOSOME

V. cholerae has two chromosomes, which are 2.9 and 
1.1 Mb in size. While CTXΦ can be integrated into the 
large chromosome, it can also be integrated into the 
small chromosome in the classical strain of the O1 group 
(Davis et al., 2000b) and in some El Tor strains (Nandi 
et al., 2003)  prior to the emergence of the O139 strains. 
For the El Tor N16961 strain of the O1 group of V. chol-
erae, which was the fi rst strain for which whole-genome 
sequencing was completed (Heidelberg et al., 2000), its 
CTXΦ resides on the large chromosome, while on the 
small chromosome there is a single empty integration 
site that is similar to the one on the large chromosome. In 
classical strains of the O1 group, CTXΦ can be present 
on both the large and the small chromosome (Davis  et 
al., 2000b; Trucksis et al., 1998). Additionally, an inte-
grated CTXΦ genome exists on the small chromosomes 
of some E1 Tor strains (Nandi et al., 2003). The regions 
of variation in different types of CTXΦ phages in the 
CTXΦ family are mainly concentrated in the rstR-ig2 
sequences in the RS region; therefore, the rstR-ig2 se-
quence serves as the main basis for distinguishing dif-
ferent alleles in the phage family. Different alleles of the 
CTXΦ family can be integrated into the same strain.

Homologous recombination events exert great influ-
ence on the arrangement of CTXΦ on the host chromo-

some. During the CTXΦ integration process, homolo-
gous recombination can occur, not only in pCTXΦ which 
exists as RF, and between the attB integration sites on the 
chromosome, but also in between the important elements 
related to the CTXΦ genome. It was recently determined 
that the occurrence of an atypical El Tor strain of V. chol-
erae (with biochemical characteristics of the El Tor strain 
of V. cholerae, except that the CT gene sequence was 
not the one that is typically carried by the El Tor strain) 
may have originated through interchromosomal or intra-
chromosomal homologous recombination in the relevant 
homologous regions from an intermediate strain that was 
infected by different types of CTXΦ phages (Kim et al., 
2014). This recombination did not involve large changes 
to the chromosome, but rather limited changes to small 
relevant elements related to the CTXΦ phage, such that 
the biochemical characteristics of the strain remained un-
changed. The outcome of the recombination altered the 
arrangement of CTXΦ on the large and small chromo-
somes, representing an important event in V. cholerae 
evolution. Such events may also be one of the important 
reasons for the occurrence of chimera phages.

The presence of CTXΦ in V. cholerae is complex, with 
varying CTXΦ types, copy numbers, and polymorphisms 
of position and arrangement on the two host chromo-
somes, which are related to the RS region that encodes 
the dissociation and integration functions. It is affected 
by factors such as the attB site and its adjacent sequenc-
es, such as TLC. All of these factors are related to the 
transfer and integration of CTXΦ in V. cholerae and, 
therefore, to the evolution of V. cholerae pathogenicity. 
The evolution of the strain is a very long process, and 
the long-lasting interactions among many factors lead to 
polymorphisms. The mechanism of interactions between 
CTXΦ and other factors and the evolutionary direction 
of strains requires further in-depth study. 
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