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LETTER

PHYPred: a tool for identifying bacteriophage enzymes and
hydrolases

Dear Editor,

Bacteriophages are viruses that attack bacteria and kill
them through the lytic replication cycle. Many studies
have reported that phages are more specific to bacteria
than antibiotics are; thus, phage therapy has many poten-
tial applications in human medicine, with the advantage
of having few side effects (Keen, 2012). Investigating
the mechanisms of bacteria-killing phages will therefore
aid in the development of antibacterial drugs.

Hydrolases encoded by phages play a key role in the
interaction between phages and host bacteria. These en-
zymes act on the bacterial cell wall to kill the host bac-
teria and then release progeny phages (Nielsen et al.,
1999). Thus, correctly identifying the hydrolases en-
coded by phages can provide important clues for not
only studying the lytic mechanism of the phage-bacteria
system but also discovering potential antibacterial drugs.
With the accumulation of proteomics data, various ma-
chine-learning methods have been applied to predict
functional phage proteins. Sequritan et al. designed an
artificial neural network (ANN)-based method to predict
viral structural proteins using amino acid frequency (Se-
guritan et al., 2012). Recently, a special type of structural
protein, phage virion protein, was identified using
primary sequence information (Ding et al., 2014; Feng et
al., 2013).

However, to our knowledge, no computational method
has been developed to predict phage hydrolases. Thus,
the aim of this letter is to describe a powerful model for
identifying phage hydrolases. We started by discrimi-
nating phage enzymes from phage non-enzymes. Once a
phage protein is recognized as phage enzyme, the model
will determine whether the predicted enzyme is phage
hydrolase.

First, we collected phage proteins from the Universal
Protein Resource (UniProt) (UniProt, 2015). To improve
the quality of the data, we only chose phage proteins that
have been annotated in Swiss-Prot. Subsequently, we ex-
cluded proteins whose sequences contained illegal chara-
cters such as “B”, “X”, and “Z”. Furthermore, the pro-
gram CD-HIT (Fu et al., 2012) was used to eliminate
similar sequences with a cutoff threshold of 30%. Fi-

nally, the benchmark dataset contained 124 phage en-
zymes and 131 phage non-enzymes. The 124 phage en-
zymes were divided into 69 hydrolases and 55 non-hy-
drolases.

Second, we used the g-gap dipeptide composition ex-
tending from the adjoining dipeptide composition to de-
scribe the correlation of the residues in the protein
primary sequence (Lin et al., 2013). Thus, a given phage
protein P can be formulated by a 400-dimension vector.
Based on the hypothesis that if the sample variance of a
feature between groups is larger than the sample vari-
ance within groups, then the feature is suitable for classi-
fication, we used analysis of variance (ANOVA) (F-
scores) to describe the contribution of each feature (Lin
et al., 2013).

Third, we used a support vector machine (SVM) to
perform the classification. The free software package
LibSVM was used to implement the SVM. The radial
basis function (RBF) was chosen as the kernel function
because it is more suitable for nonlinear classification
than other kernel functions (Tang et al., 2016). To ob-
tain the best performance, the grid search approach was
applied to optimize the regularization parameter C and
the kernel width parameter γ. The performance of our
models was quantitatively evaluated using jackknife
cross-validation tests (Guo et al., 2014; Lin et al., 2008;
Lin et al., 2014; Liu et al., 2015) with the use of three in-
dexes (Lin et al., 2013; Zhu et al., 2015; Zou et al.,
2013): sensitivity (Sn), specificity (Sp), and overall ac-
curacy (OA).

Following the above steps, we first needed to deter-
mine whether a phage protein was an enzyme. For this
step, we varied the interval residue parameter g from 0 to
9. Our proposed feature selection technique described in
this letter was used to exclude noise and redundant in-
formation. An arbitrary g-gap dipeptide composition has
400 features, and a total of 400 F-scores were calculated
for the 400 features. Subsequently, the 400 features were
ranked according to their F-scores. The incremental fea-
ture selection (IFS) process was used to determine the
optimal number of features according to the following
steps. First, the feature with the highest F-score was se-
lected as the SVM input. The OA was then calculated to
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evaluate the performance of this feature. Second, the fea-
ture with the second highest F-score was combined with
the first feature to form a new feature subset. The OA
was also used to estimate the performance of the new
feature subset using the SVM. This process was re-
peated until 400 OAs were calculated. The best feature
subset is defined as the subset that can produce the
highest OA. By setting dimension of the feature subset
(the number of features) as the abscissa and the OA as
the ordinate, we plotted the 10 curves shown in Figure
1A. As shown in this figure, the highest OA of 84.3%
can be achieved by 59 2-gap dipeptides, which are re-
garded as the optimal feature subset. Thus, the first model
was constructed using these features, with Sn and Sp
values of 87.1% and 81.7%, respectively.

Once a new sequenced phage protein is discriminated
as a phage enzyme, the second step is to determine whether

the phage enzyme is a hydrolase. As in the first step, the
parameter g was varied from 0 to 9. Moreover, the same
feature selection process described in the above para-
graph was used to identify the best feature subset that
can produce the highest OA. Accordingly, we examined
the predictive performance of 4, 000 (400 × 10) feature
subsets and obtained the 10 curves shown in Figure 1B.
The results show that the highest OA of 93.5% can be
achieved by the optimized feature subset including 24 5-
gap dipeptides. In addition, 92.8% of phage hydrolases
and 94.5% of other phage enzymes were correctly identi-
fied in jackknife cross-validation tests. These results in-
dicate that the genetic information for phage hydrolases
is mainly contained in higher-order correlations, and
these should be further investigated to determine their
biological meaning.

Based on the above model, we built a user-friendly
webserver called PHYpred that can be used by the vast
majority of scholars to efficiently and easily study phage
enzymes and hydrolases without having to learn com-
plicated mathematics or programs. The web interface
used to browse and submit entries is coded in PHP. The
server can be freely accessed at http://lin.uestc.edu.cn/
server/PHYPred. A guide on how to use the tool to ob-
tain the desired results is provided in the webserver.

The correlation of nucleotides or residues is the main
carrier of genetic information. Therefore, we used g-gap
dipeptide compositions as features for prediction.
However, the performances of models based on such
fundamental information are far from satisfactory. To
improve the accuracies and identify the real correlations
hidden in protein sequences, a feature selection tech-
nique was applied to select optimal features. The results
demonstrate that the technique can pick out informative
features, dramatically improve the predictive perfor-
mance, and enhance the generalizati on abilities of the pro-
posed models. Using the correlation information and fea-
ture selection technique, our models produced promising
results for predicting phage enzymes and hydrolases.

In summary, a new tool called PHYPred was estab-
lished for the accurate prediction of potential novel
phage enzymes and hydrolases. In PHYPred, a high-
quality benchmark dataset was constructed by setting a
series of standards, which can guarantee the reliability of
the tool. Thus, the dataset has the potential to become a
standard dataset for user in the development of computa-
tional methods for the prediction of phage enzymes and
hydrolases. Moreover, a feature selection technique was
successfully applied to improve the performance. Our
results indicated that the proposed model can predict
phage enzymes and hydrolases at a high discriminative
accuracy. This method can also be used in other fields
such as bioinformatics and computational biology.

Figure 1.  A plot showing the incremental feature selec-
tion (IFS) procedure for (A) discriminating phage en-
zymes from non-enzymes and (B) discriminating phage
hydrolases from other enzymes.
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