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Abstract
The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV)

and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital

polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based

on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold

(Ct) value was linear from 101 to 108 copy/lL, with a standard curve R2 of 0.999 and amplification efficiency of 92.203%;

however, a concentration as low as 1 copy/lL could not be detected. In comparison with RT-qPCR, the ddPCR method

resulted in a linear range of 101–104 copy/lL and was able to detect concentrations as low as 1 copy/lL. Thus, for
detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 101 copy/lL),
while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR

method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.

Keywords Zika virus � Nucleic acid detection � Micro-droplet digital polymerase chain reaction (ddPCR) �
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Introduction

Zika virus (ZIKV) is a single-stranded RNA virus

belonging to the family Flaviviridae and genus Flavivirus.

It was first isolated from a forest in Uganda in 1947 (Dick

et al. 1952) and is transmitted through mosquito bites,

particularly those from Aedes aegypti and Aedes albopictus

(Weaver et al. 2016). ZIKV infection is characterized by

mild fever (37.8–38.5 �C), joint pain (particularly in the

hands and feet), myalgia, headache, orbital pain, conjunc-

tivitis, and skin rash, and it can also cause microcephaly

and Guillain-Barré syndrome (Chouin-Carneiro et al.

2016). The ZIKV genome encodes three structural proteins

(capsid protein, C; precursor protein, prM; and envelope

protein, E) and seven nonstructural proteins (NS1, NS2A,

NS2B, NS3, NS4A, NS4B, and NS5) (Fontes-Garfias et al.

2017).

For the detection of ZIKV, Rossini et al. (2017) showed

that the whole blood and urine testing period lasts longer

than the plasma. ZIKV can be detected in whole blood

approximately 3–26 days after infection and in plasma

3–10 days (Hayes, 2009). In serological tests, ZIKV IgM

or IgG antibodies can be detected by enzyme-linked

immunosorbent assay (ELISA). However, ELISAs may

generate false-positive results owing to the strong cross-

reactivity among flaviviruses (Hancock et al. 2014;
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Priyamvada et al. 2016). This causes difficulty in the

diagnosis of ZIKV, especially in regions where other fla-

viviruses are endemic. The standard tool for quantifying

viral DNA or RNA is real-time fluorescent quantitative

polymerase chain reaction (RT-qPCR). However, for RT-

qPCR, absolute quantification and the establishment of a

standard curve are necessary, increasing the difficulty in

detecting the virus (Hindson et al. 2011). Additionally,

several factors may decrease the amplification efficiency of

RT-qPCR, including the presence of PCR inhibitors in

patient serum, leading to quantification failure (Rutsaert

et al. 2018). Therefore, the detection sensitivity of RT-

qPCR is limited when using serum samples with low viral

concentrations (Balm et al. 2012).

Micro-droplet digital polymerase chain reaction

(ddPCR) is a new molecular method enabling the absolute

quantification of DNA targets without the need for a cali-

bration curve as in RT-qPCR (Sykes et al. 1992). The

principle of digital PCR was first introduced in the 1990s.

The ddPCR method uses the same primers and probes as

RT-qPCR but can obtain high sensitivity and precision for

detecting target molecules (Sidransky et al. 1992).

Although recently developed, ddPCR is used widely in

medical research and clinical applications. This technology

uses a combination of microfluidics and proprietary sur-

factant chemistries to randomly distribute target and

background nucleic acids into water-in-oil droplets that are

uniform in size and volume (Hindson et al. 2011). Every

microdroplet is a micro PCR reactor, with each containing

zero or at least one copy of the target DNA (Hindson et al.

2011; Nakano et al. 2005; Pinheiro et al. 2012). Using

Poisson statistics, digital PCR enables the absolute quan-

tification of nucleic acids, reducing the subjectivity of the

analysis by eliminating the need for signal threshold

determination and standard curves (Sedlak and Jerome

2013).

As an emerging and versatile molecular biotechnology,

ddPCR is a robust and powerful method for the detection

and quantification of nucleic acids with unparalleled

accuracy and precision without the need for an external

calibration curve or reference. In recent years, an increas-

ing number of ddPCR applications has been introduced

into the medical, environmental (Cao et al. 2015; Nathan

et al. 2014), and food safety control fields (Floren et al.

2014), but the method has not yet been applied to ZIKV.

Therefore, in this study, we aimed to establish ddPCR and

RT-qPCR protocols for the detection of ZIKV based on the

amplification of the NS5 gene. We compared the sensitivity

and specificity of these methods, aiming to provide a

highly accurate method for the detection of low titers and/

or the early detection of ZIKV.

Materials and Methods

Sample Processing

The Asian ZIKV Z16006 strain was provided by the

Institute of Microbiology at the Center for Disease Control

and Prevention of Guangdong Province, China (GenBank

no. KU955589.1). Four serotypes of dengue virus (DV1

Hawaii strain, DV2 NGC strain, DV3 H87 strain, and DV4

H241 strain) were preserved in our laboratory. The above

viruses were amplified and cultured in C6/36 cells. After

observing cytopathic effects, cells were repeatedly frozen

at - 80 �C, thawed, and centrifuged (Xin et al. 2016).

Clinically positive ZIKV blood samples were obtained

from the Center for Disease Control and Prevention of

Jiangmen, Guangdong Province, China.

Instruments and Reagents

The micro-ddPCR instrument, amplification premixed

reagent, Droplet PCR Supermix, and micro-drop reagent

were all from Bio-Rad (Hercules, CA, USA). Reverse

transcription was performed using a Takara Prime Script

RT Reagent Kit (Perfect Real Time kit; Takara, Shiga,

Japan). Bestar qPCR Master Mix (TaqMan Probe) was

obtained from DBI Bioscience (Ludwigshafen, Germany),

and a QuantStudio 6 Flex Real-Time PCR System was

purchased from ThermoFisher Scientific (Waltham, MA,

USA).

Design of Primers and Probes

ZIKV sequences were downloaded from GenBank and

compared. After identifying conserved sequences, primers

and probes were designed using Primer 5.0 (Primier,

Canada) with the Z16006 strain as the reference. The pri-

mers and probes were evaluated using Oligo 7 (Oligo,

USA).

RNA Extraction and Reverse Transcription

Before RNA extraction, we used Solid Phase RNase-be-

gone (Sangon Biotech, Shanghai, China) to remove

ribonuclease (RNase) from the operating desktop, pipettes,

and gloves. RNase-free filter tips (Sangon Biotech,

Shanghai, China) were also used to minimize the effect of

RNase. Samples were thawed to room temperature (25 �C)
before use. Viral RNA was extracted using QIAamp�

(Qiagen, Hilden, Germany) with a final RNA volume of

50 lL. The RNA was separated into aliquots and preserved

at - 80 �C.
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For reverse transcription, the components were prepared

on ice as follows: 2 lL 59 Prime Script Buffer; 0.5 lL
Primer Script RT Enzyme Mix I; 0.5 lL oligo dT primer,

0.5 lL random 6-mers; 4 lL total RNA; and 2.5 lL
RNase-free dH2O. The reaction conditions were as follows:

reverse transcription at 37 �C for 15 min; reverse tran-

scriptase inactivation at 85 �C for 5 s, and a final hold at

4 �C.

ddPCR

For ddPCR, each 20-lL reaction system contained 10 lL
ddPCR Supermix (no dUTP), 6 lL primer–probe premix

(0.4 lL each of 10 lmol/L upstream and downstream

primers, 0.2 lL of 10 lmol/L probe, 5 lL deionized

water), and 4 lL nucleic acid extract. After mixing, 20 lL
of each sample reaction was added to the middle of a DG8

cartridge. Next, 70 lL oil was added to the bottom row of

each lane to avoid bubble formation, and the wells were

covered. The reaction system and droplet-forming cartridge

were placed in a droplet generator and subjected to micro-

droplet treatment.

Droplets were generated in the top row of the wells, and

the suction volume was adjusted to 40 lL. The samples

were then slowly transferred to 96-well plates, and a pre-

heated PX1 heat sealing device was used with a sealing

film (with the red line up) at 180 �C for 5 s. The PCR

conditions were as follows: pre-denaturation at 95 �C for

10 min and 40 cycles of 94 �C for 30 s and 55 �C for

1 min with a temperature change rate of 2 �C/s. The

96-well plate containing the PCR-amplified products was

then placed on a QX200 micro-drop reader and analyzed

using QuantaSoft software (Bio-Rad).

RT-qPCR

For RT-qPCR, Bestar qPCR Master Mix (10 lL), upstream
and downstream primers (0.4 lL each), probe (0.2 lL),
template cDNA (1 lL), and H2O (8 lL) were used. The

amplification conditions for RT-qPCR were as follows:

95 �C denaturation for 2 min, followed by 40 cycles of

95 �C for 10 s and 60 �C for 30 s.

Results

Design and Evaluation of Primers and Probes

ZIKV sequences were downloaded from GenBank and

aligned, and conserved sequences were identified. Primers

were designed to amplify the NS5 gene while ensuring that

the GC contents and Tm values were similar. The length of

the target fragment was about 100 bp without hairpin

structures to avoid the formation of stable dimers and

mismatches at the 30 terminus. The designed primers are

shown in Table 1.

Evaluation of Sensitivity of RT-qPCR and ddPCR

Tenfold dilutions of ZIKV plasmid standards (100–108

copy/lL) were prepared. The relationship between the RT-

qPCR cycle threshold (Ct) value and copy number exhib-

ited a good linear relationship as follows: Ct = - 3.524 log10
(copy) ? 38.04 (R2 = 0.999, amplification efficiency =

92.203%). Based on the standard curve, we found that the

range of linearity for RT-qPCR was 101–108 copy/lL, and
the lower detection limit for ZIKV was 101 copy/lL. How-
ever, at a concentration of 1 copy/lL, ZIKV could not be

detected (Fig. 1A).

In comparison with RT-qPCR, the results from ddPCR

showed that the method was not suitable for detecting

samples containing more than 104 copy/lL due to poor

repeatability (data not shown). Therefore, we prepared a

fivefold dilution series of the standard of 104 copy/lL for

ddPCR. The signal threshold of event numbers was set at

1000, with a value above 1000 being positive and a value

below being negative (Fig. 1B), and the total numbers of

droplets in the sample should ideally be above 10,000. For

our samples, the total event numbers were more than

10,000 (except one sample is 9990) (Fig. 1C). High accu-

racy was obtained if the copy number of each diluted

sample was in line with the theoretical value for the stan-

dard sample (Fig. 1D). Compared with RT-qPCR, ddPCR

had a lower detection limit of 1 copy/lL (Fig. 1E).

Evaluation of Specificity and Repeatability of RT-
qPCR and ddPCR

To verify the repeatability of the two methods for ZIKV

detection, we conducted each experiment three times and

compared the results. The results of RT-qPCR showed that

there was good repeatability in the dilution range of 101–

108 copy/lL but that the Ct value of 1 copy/lL was sig-

nificantly different among experiments. This suggests that

the RT-qPCR method is unstable for low-copy-number

detection (100–101 copy/lL). However, ddPCR showed

good repeatability for the detection of low copy numbers

(100–101 copy/lL) (Fig. 2A, 2B).
Next, we evaluated the specificity of the assays using

four dengue virus (DENV) serotypes. Each experiment was

repeated three times, and the results were compared. All

RT-qPCR results were negative. As can be seen from

Fig. 2C and 2D, negative results were also obtained using

ddPCR. The nucleic acid concentrations detected by the

absolute quantification method were zero. Moreover, only

negative micro-droplets were observed (Fig. 2C), and
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Fig. 1 Sensitivity of RT-qPCR and ddPCR for detection of ZIKV.

A Standard curve of the RT-qPCR method; B–E results of fivefold

dilution series of ZIKV plasmid standards detected by ddPCR.

B Scatter plot of the total number of events (droplets). Z1: plasmid

standard, 2000 copy/lL; Z2–Z6: fivefold dilution series of Z1; N:

negative control. The threshold is 1000. C Positive (blue) and total

(green) number of events (droplets). D Genetic concentration of each

diluted sample. E Comparison between ddPCR-detected concentra-

tion and theoretical concentration; #P[ 0.05 (not significant).

Table 1 Primers and probes for

ZIKV detection.
Primer/probe Sequence Position

ZK-F 50-GGCRTTRGCCATCAGTCG-30 9845–9863

ZK-R 50-ATGGAGCATCCGKGAGACT-30 9927–9944

Probe 50-FAM-TGGCAGCTYCTTTATTTCCACARAAG-BHQ1-30 9894–9919
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histogram analysis showed that the total number of droplets

was more than 10,000, among which none were positive

(Fig. 2D).

RT-qPCR Detection of ZIKV in Clinically Positive
Blood Samples

Two serum samples from clinically positive patients

(Sample A and Sample B) were tested using the two

methods with three repeated wells each. According to RT-

qPCR analysis, the Ct value of sample A was 28.75,

and the corresponding concentration of ZIKV was

432.5 copy/lL. There was no significant difference

between this result and that obtained via ddPCR (Fig. 3A).

For ddPCR, the three replicates of sample A exhibited good

consistency (P[ 0.05) (Fig. 3B, 3C). By contrast, there

was a significant difference between the results of the two

detection methods for sample B (Fig. 3D). According to

RT-qPCR, the Ct value of sample B was 38.868, which

exceeded the detection range (range of Ct: 15–35). Com-

parison with the standard curve showed that no ZIKV was

detected (Fig. 3D). However, ddPCR analysis showed that

the concentration of sample B was 13.8–14.3 copy/lL
(Fig. 3E), with more than 10,000 total droplets, ensuring

the accuracy of the results (Fig. 3F).

Discussion

Approximately 20% of individuals infected with ZIKV

develop symptoms similar to those of other flaviviruses

(Duffy et al. 2009), and this presents a considerable chal-

lenge to clinical diagnosis. There are two types of clinical

diagnostic tests for ZIKV: serological and molecular

detection tests. Antibody capture ELISA can be used for

the qualitative detection of ZIKV IgM antibodies. How-

ever, cross-reactions with other flaviviruses lead to diffi-

culty in interpreting the results (Zanluca et al. 2016).

Therefore, nucleic acid detection methods are superior to

serological detection owing to their high specificity.

In this study, we designed primers and probes specific

for the NS5 gene of ZIKV and established a method for

Fig. 2 Repeatability and specificity of RT-qPCR and ddPCR methods

for ZIKV detection. A Construction of RT-qPCR standard curves

using a tenfold dilution series of plasmid standard and repeated three

times. Red circle: no Ct value; #P[ 0.05 (not significant), *P\ 0.05

(significant difference). B Results from a fivefold dilution series of

plasmid standard detected with ddPCR and repeated three times.

#P[ 0.05 (not significant). C Scatter plot of the total number of

events (droplets); the threshold for a positive result was 1000, and

there were no positives. D Positive (blue) and total (green) number of

events (droplets), with no positive events shown. DV1–4 represents

four serotypes of dengue virus. N, negative control.
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ZIKV nucleic acid detection using ddPCR and RT-qPCR.

Our results showed that the designed NS5-targeted primers

and probes exhibited high specificity. The NS5 gene is the

largest gene in the ZIKV genome and is located at the 30

end of the open reading frame (ORF). It is a nucleic acid

detection target commonly used for the detection of Fla-

vivirus (Faye et al. 2014). Currently, several laboratories

have established nucleic acid detection technologies for

ZIKV, with the main targets being the E and NS5 genes

(Gourinat et al. 2015). Therefore, the conserved sequence

of NS5 gene may be a reliable detection target.

In molecular biology, amplification levels of traditional

PCR can only roughly be detected after the reaction has

ended and cannot be used to quantitatively detect nucleic

acids in the sample. RT-qPCR technology utilizes changes

in the fluorescence intensity of chemical substances in the

reaction system for the quantitative detection of nucleic

acids. Xu et al. (2016) used one-step SYBR Green real-

time PCR for the detection of ZIKV with a detection limit

of at least 1.0 PFU/mL (1 PFU is approximately equal to

2 9 105 RNA genome copy). However, as this method

allows the simultaneous detection of both specific and

nonspecific PCR products, it produces false positives.

Frankel et al. (2017) developed the Abbott Real-Time

ZIKA assay, and the detection limit of this assay was

shown to be 120 copy/lL in whole blood. Moreover, Balm

et al. (2012) developed a sensitive and specific one-step

RT-qPCR assay, and the lower limit of detection of this

assay was 140 RNA copy/PCR. The results of the above

studies are similar to our findings. Our RT-qPCR data

showed good linearity between the Ct value and sample

concentration at a concentration range of 101–108 copy/lL,
and false-negative results were obtained when the sample

concentration was below 101 copy/lL, especially in serum

samples. Compared with the results of the above

researchers, a lower detection limit was obtained in this

study, although quantification was unstable at this

concentration.

To compensate for the poor stability of RT-qPCR in

low-concentration samples, we aimed to develop a more

sensitive and specific detection method. Calvert et al. used

reverse transcriptase loop-mediated isothermal amplifica-

tion to detect RNA from ZIKV at concentrations as low as

1.2 copy/lL; however, they observed a very high false-

negative rate (Calvert et al. 2017). ddPCR overcomes the

deficiencies of reverse transcriptase loop-mediated

isothermal amplification and exhibits better sensitivity and

reliability. The quantitative detection of nucleic acids by

ddPCR is based on the Poisson distribution principle rather

than relying on external standard curves. Owing to the

advantage of absolute quantitation, this method permits

better accuracy at low concentrations without the need for

standard curves (Strain et al. 2013). ddPCR has been used

for the development of other applications assessment

of human immunodeficiency virus (HIV) and cy-

tomegalovirus viral loads, monitoring of the genetic sta-

bility of recombinant protein expression systems, and

detection of a known mutation in a live attenuated vac-

cine virus (Bizouarn 2014; Hayden et al. 2013; Hindson

et al. 2011; Pinheiro et al. 2012; Strain et al. 2013; Taylor

et al. 2015). Our ddPCR results showed good linearity with

sample concentrations of 1–104 copy/lL. Compared to the

poor stability of RT-qPCR at the detection limit of 101 -

copy/lL, ddPCR showed a detection limit of 1 copy/lL
with good specificity and repeatability. Thus, ddPCR

showed better performance than RT-qPCR when detecting

Fig. 3 Results of ZIKV detection in positive clinical blood samples

using RT-qPCR and ddPCR. A Comparison of Sample A concentra-

tion using the two methods; #P[ 0.05 (not significant); B, C results

of ddPCR analysis of sample A in three repeated wells; D comparison

of Sample B concentration using the two methods. Red circle: no

virus detected; *P\ 0.05 (significant difference); E, F results of

ddPCR analysis of sample B in three repeated wells.
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ZIKV in serum samples with low viral concentrations.

However, high concentrations of total DNA can affect the

viscosity of the aqueous phase and complicate the forma-

tion of droplets. ddPCR is therefore not suitable for

quantifying high-concentration samples, especially those in

which the target gene concentration is above 105 copy

(Pinheiro et al. 2012), these samples should be diluted

before quantification (Zhao et al. 2013).

In summary, a good linear relationship was obtained

with RT-qPCR when detecting samples with higher con-

centrations (above 101 copy/lL), but this method is not

suitable for detecting low copy numbers (less than 101 -

copy/lL). By contrast, ddPCR detection of low-concen-

tration samples, especially serum sample, shows excellent

specificity and sensitivity; however, it cannot be applied to

high-concentration samples. Therefore, RT-qPCR and

ddPCR could be used to complement each other in clinical

examination. In clinical samples with low concentrations of

ZIKV, for example in samples obtained 1–3 days after

infection, ddPCR should be used to achieve the best

diagnostic accuracy and sensitivity. For routine laboratory

ZIKV detection, including the analysis of clinical samples

obtained [ 3 days after infection, RT-qPCR should be

used.
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