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Abstract
Suitable animal models for human immunodeficiency virus type 1 (HIV-1) infection are important for elucidating viral

pathogenesis and evaluating antiviral strategies in vivo. The B-NSG (NOD-PrkdcscidIl2rgtm1/Bcge) mice that have severe

immune defect phenotype are examined for the suitability of such a model in this study. Human peripheral blood

mononuclear cells (PBMCs) were engrafted into B-NSG mice via mouse tail vein injection, and the repopulated human

T-lymphocytes were observed at as early as 3-weeks post-transplantation in mouse peripheral blood and several tissues.

The humanized mice could be infected by HIV-1, and the infection recapitulated features of T-lymphocyte dynamic

observed in HIV-1 infected humans, meanwhile the administration of combination antiretroviral therapy (cART) sup-

pressed viral replication and restored T lymphocyte abnormalities. The establishment of HIV-1 infected humanized B-NSG

mice not only provides a model to study virus and T cell interplays, but also can be a useful tool to evaluate antiviral

strategies.
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Introduction

Suitable human immunodeficiency virus type 1 (HIV-1)

infected animal models assist the elucidation of viral

pathogenesis and the evaluation of antiviral strategies.

Currently, several models based on nonhuman primates

(NHP) or humanized mice are available (Kumar et al.

2016). These NHPs, including Northern pig-tailed macaque

(Macaca nemestrina) and Indian Rhesus monkey (Macaca

mulatta), have been used to establish the acutely and

persistently viral infection models by infection with simian

immunodeficiency virus (SIV) or chimeric simian/human

immunodeficiency virus (SHIV). These models are use-

ful for studying viral transmission, pathogenesis, drugs,

antibodies and candidate vaccines (Dinoso et al. 2009;

Kline et al. 2013; Hessell and Haigwood 2015). Mean-

while, these models have several noted limitations, such as

the inability to precisely examine human specific immune

functions because of genetic differences in major histo-

compatibility complex (MHC) genes, the difficulty to

operate sufficient sample size due to their expensive costs,

and the mounting ethical concerns of experimentation with

large animals (Evans and Silvestri 2013). To avoid the

problems encountered in these NHP models, the human-

ized mouse models offer an alternative. The versatility of

inbreeding allows mice to reproduce rapidly and produce

strains with a clear genetic background and well defined

immune systems (Shultz et al. 2007).

To construct humanizedmice, human PBMCs, stem cells,

or lymphoid tissues have been used for transplantation into

immunodeficient mice (Zhang and Su 2012). Three decades

ago, mice with severe combine immune deficiency (SCID)

that lacked of both T cells and B cells had been used for the

reconstruction of human immune cells or system. SCIDmice
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transplanted with human PBMCs can construct SCID-hu

PBL (human peripheral blood leukocytes) mice (Ganick

et al. 1980; Mosier et al. 1988), and those transplanted with

human fetal liver and thymus can construct SCID-hu

Thy/Liv mice (McCune et al. 1988). However, SCID-hu

PBL mice lack human lymphatic organs and have been

proved to cause graft versus host disease (GVHD), while

SCID-huThy/Livmice have low frequency of human cells in

their blood and peripheral organs.

B-NSG (NOD-PrkdcscidIl2rgtm1/Bcge) mice have Nod-

scid-il2rg null gene background and a longer lifespan than

NOD/SCID mice, and those mice have recently been

experimented for humanization (Shultz et al. 1995; Ito

et al. 2002). These B-NSG mice display severe immune

defects, lacking mature T cells, B cells and functional NK

cells due to a defective rearrangement of the T cell receptor

and immunoglobulin genes. Therefore, these homozygous

mice have been shown to be suitable for the transplantation

and growth of human PBMCs and hematopoietic stem cells

(HSCs) (Ishikawa et al. 2005; Strowig et al. 2011). The

humanized B-NSG mice transplanted with bone marrow/

liver/thymus (BLT) can afford differentiation of human

HSCs into a variety of human cells, including lymphocytes,

NK cells, monocytes, macrophages and dendritic cells,

and these human cells can be detected in multiple tissues

and organs, including blood, bone marrow, lymph nodes,

spleen, thymus, liver, lung, digestive tract and reproductive

tract (Lan et al. 2006; Brainard et al. 2009; Chung et al.

2015). Whereas, the B-NSG mice-based Hu-thy/liv model

can only allow differentiation of human T cells (Honeycutt

et al. 2013; Nixon et al. 2017). These humanized mice

have been used for infection with HIV-1 to establish the

acute and persist infection models to elucidate the pro-

cesses of viral invasion, immuno-pathogenesis and to

evaluate strategies for HIV-1 prevention, treatment and

eradication (Brooks et al. 2003; Sun et al. 2007; Jiang et al.

2008; Brainard et al. 2009; Marsden et al. 2012; Zhang and

Su 2012; Gruell and Klein 2017; Nixon et al. 2017).

Meanwhile, the limitation of these mice models includes

expensive experimental cost, delicate surgical procedures,

and months of time required for reconstruction.

In this study, we construct a rapid and convenient

humanized mouse model of HIV-1 infection using B-NSG

mice which were engrafted with human PBMCs via tail

vein injection. We then demonstrated that the humanized

mice can be infected by HIV-1, and the viral infection

recapitulates the expected changes of T cell subsets in

human HIV infection, while cART suppresses viral repli-

cation and restores T cell subset abnormalities.

Materials and Methods

Ethics Statement

NOD-PrkdcscidIl2rgtm1/Bcge (B-NSG) mice were pur-

chased from Beijing Biocytogen and housed in a pathogen-

free animal facility at Institut Pasteur of Shanghai. Human

peripheral blood buffy coats were purchased from Chang-

hai Hospital, Shanghai, China, and PBMCs were isolated

from the buffy coats of healthy donors by Ficoll-density

gradient centrifugation as described previously (Li et al.

2017). All procedures were conducted in compliance with a

protocol approved by the Institutional Animal Care and

Use Committee at Institut Pasteur of Shanghai. All

experiments were performed in accordance with relevant

guidelines and regulations.

Construction of Humanized Mice, HIV-1 Infection
and Antiretroviral Treatment

5-weeks old female B-NSG mice were transplanted with

human healthy PBMCs (5 9 106 cells/mouse) via tail

intravenous injection. Mice were humanized with PBMCs

from different donors separately. The peripheral blood

from the retro-orbital sinus was collected each week after

transplantation and the differentiation of human CD45?

cells were monitored by flow cytometry. For HIV-1

infection, humanized mice with 3-weeks human PBMCs

transplantation were selected for infection with HIV-1/JR-

CSF (CCR5-tropism) (10 ng p24Gag/mouse) by intraperi-

toneal injection. Viral replication in plasma and tissues of

humanized mice was quantified by quantitative real-time

PCR (qRT-PCR) to detect the production of gag mRNA.

At 4-weeks post-infection (w.p.i.), mice were treated

with combination antiretroviral therapy (cART). cART

regimens are composed of nucleoside reverse transcriptase

inhibitor Tenofovir disoproxil fumarate (TDF; 205 mg/kg),

nucleoside reverse transcriptase inhibitor Emtricitabine

(FTC; 211 mg/kg) and integrase inhibitor Raltegravir

(RAL; 80 mg/kg) (Satheesan et al. 2018). Triple combi-

nation drugs were dissolved in 3% DMSO, 40% PEG-400,

2% Tween-80 and 56% ddH2O. Mice were administered

daily via intraperitoneal injection.

HIV-1 Replication Assay by qRT-PCR

Total cellular mRNAs from plasma and tissues were

extracted using the QiaAmp Viral RNA Mini Kit (Qiagen,

Germany) and then reverse transcribed into cDNA using

the ReverTra Ace qPCR RT Master Mix with gDNA

Remover Kit (Toyobo, Japan). qRT-PCR was performed

on the ABI 7900HT Real-Time PCR system (Applied
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Biosystems, United states) (509 ROX and 29 Gold Taq-

Man Mixture; CMBIO), with an initial denaturation step at

95 �C for 10 min, amplification with 40 cycles of denatu-

ration (95 �C, 15 s) and annealing (60 �C, 1 min). HIV-1

gag primers were used: forward primer, 50-GGT GCG

AGA GCG TCA GTA TTA AG-30, reverse primer 50-AGC
TCC CTG CTT GCC CAT A-30, and probe, 50-FAM-AAA

ATT CGG TTA AGG CCA GGA GGA AAG AA-

TAMRA-30 (Ye et al. 2017).

Flow Cytometry

Peripheral blood was collected from retro-orbit. Spleen,

bone marrow and liver were gained at necropsy to make the

single cell suspension. Red blood cells were eliminated by

using Red Cell Lysis buffer solution (Multi Sciences,

Hangzhou, China). Monoclonal antibodies against these

specific antigens of human and mouse cells were listed as

follows: APC-mouse CD45 (30-F11, eBioscience, United

states), FITC-human CD45 (HI30, eBioscience), PE-human

CD3 (UCHT1, eBioscience), percpcy5.5-human CD4

(HIB19, eBioscience), Brilliant Violet 421-human CD8

(RPA-T8, BD Biosciences), APC-cy7-human CCR5(2D7,

eBioscience), APC-humanCXCR4 (12G5; BD Pharmingen,

United states). The stained cells were detected using a For-

tessa flow cytometer (BD Pharmingen) and analyzed with

FlowJo 7.6.1. software (United states).

Statistical Analysis

This software of GraphPad Prism version 7.0. (San Diego,

California, United states) was used to perform paired t tests

to analyze statistically significant differences.

Results

Humanization of B-NSG Mice by Transplanting
Human PBMCs

Five weeks old female B-NSG mice were transplanted with

healthy human PBMCs via tail vein injection (Fig. 1A).

The human CD45? (hCD45?) leucocytes in mouse

peripheral blood were monitored by flow cytometry over

time. At 4–7 weeks post transplantation, the number of

hCD45? leucocytes reached a peak, and then declined but

remained detectable for an additional 4–5 weeks (Fig. 1B).

As shown in a representative mouse, hCD45? cell popu-

lation in peripheral blood compromises of both CD4? and

CD8? T cell subsets. Among the 82.4% of hCD45? cells,

the majority were CD3? T cells (93.8%), of which, CD4?

and CD8? T-lymphocytes account for 50.2% and 41.8%,

respectively (Fig. 1C). The reconstruction of human B

cells and myeloid cells was not observed (data not shown).

Taken together, these data show the successful recon-

struction of human T-lymphocyte subsets in the peripheral

blood of B-NSG mice transplanted with human PBMCs.

Humanized B-NSG Mice Can Be Infected by HIV-1
and Viral Replication Can Be Ceased by cART

Next, we examined the susceptibility of these humanized

mice for HIV-1 infection. These B-NSG mice with

reconstruction of human T-lymphocyte were intraperi-

toneally (i.p.) injected with HIV-1 (Fig. 2A). Because these

reconstructed hCD4? T cells expressed HIV-1 co-receptor

CCR5 (10%–33%), but not CXCR4 (less than 1%)

(Fig. 2B), the CCR5-tropic virus HIV-1/JR-CSF was used

for infection (Fig. 2A). Viral replication in plasma was

monitored longitudinally by qRT-PCR detection for gag

gene expression. Results showed a rapid viral replication

during the first-week of infection, and viremia reached a

steady peak level for the next few weeks (Fig. 2C). The

adminstration of a cocktail of TDF/FTC/RAL at 3 w.p.i.

markedly suppressed viral replication and reduced the

plasma viral load to undetectable level within 1 week of

treatment (Fig. 2C). Neither infection nor cART-treatment

obviously affected mouse body weight (Fig. 2D). Taken

together, these data demonstrate that humanized B-NSG

mice can be successfully infected by HIV-1 and viral

replication can be suppressed by cART-treatment, and

thereby can be used as an in vivo model for studying the

establishment of HIV infection and antiretroviral treatment

outcome.

HIV-1 Infected-Humanized Mice Feature Similar
T-lymphocyte Dynamic Changes Observed
in HIV-1 Infected Humans

HIV-1 infection of human individuals can induce a rapid

CD4? T cell decline and a reverse of CD4?/CD8? T cell

ratio (Lu et al. 2015), and the cART treatment in most

cases can normalize these changes (McBride and Striker

2017). Therefore, we next investigated whether the HIV-1

infected-humanized mice could be used to feature these

changes. Results from one representative mouse showed

that, after being transplanted with human PBMCs for

3 weeks and then infected with HIV-1/JR-CSF for an

additional 4 weeks, hCD4? T cell frequency reduced from

78.5% (before infection) to 12.1% (after infection), and

hCD8? T cell frequency increased from 19.6% to 80.4%.

cART-treatment for an additional 3-weeks recovered

hCD4? T cell frequency to 45.9% and reduced hCD8? T

cell frequency to 38.5% (Fig. 3A). Similar results were

obtained from four HIV-1 infected-humanized mice

(Fig. 3B). HIV-1 infection reversed blood hCD4?/CD8?
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Fig. 1 Establishment of humanized B-NSG mice. A Schematic

diagram showing the construction of humanized B-NSG mice.

5-weeks old female B-NSG mice were transplanted with human

healthy PBMCs (5 9 106 cells/mouse) via tail intraven ous injection,

peripheral blood cells were harvested each week after transplantation

for detecting mCD45? and hCD45? cells with flow cytometry using

specific antibodies. B The dynamic of hCD45? cell population in

peripheral blood of humanized mice. Each mouse was humanized

with PBMCs from different donors separately, and eight representa-

tive mice were shown (n = 8). C The reconstruction of human

T-lymphocyte subsets. Peripheral blood cells from one representative

mouse with 5-week transplantation were collected, immunostainings

were performed using specific antibodies and detected by flow

cytometry. SSC-A, side-scattered light area.
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Fig. 2 HIV-1 infection of humanized B-NSG mice and cART

treatments. A Schematic illustration of HIV-1 infection of humanized

B-NSG mice and cART treatments. B-NSG mice with 3-week

transplantation were i.p. infected with HIV-1/JR-CSF (10 ng

p24Gag/mouse), and 4 w.p.i, cART regimens (TDF/FTC/RAL) was

administered daily by i.p. injection and lasted overtime of surveillance.

Viral load and cell subsets from retro-orbital blood sampling were

monitored. B Assay of HIV-1 co-receptor expression. Cells were

immunostained with specific antibodies and detected with flow

cytometry, and the expressions of CXCR4 and CCR5 in hCD3?

hCD4? hCD45? population were calculated. CViral load in plasma of

humanized mice was quantified by real-time (RT-) PCR to detect the

production of gag mRNA. The shaded area indicates cART-treatment.

D Mice weights were monitored.
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Fig. 3 The dynamic of human T-lymphocytes in HIV-1 infected-

humanized mice. A The longitude detection of hCD4? and hCD8? T

cell. The peripheral blood cells from one representative mouse were

harvested at the different times and further analyzed with flow

cytometry. B, C The frequencies of hCD4? and hCD8? T cell from

four humanized mice were summarized (B) and the hCD4?/CD8? T

cell ratio was calculated (C). D The dynamic changes of hCD4? and

hCD8? T cells over time of infection and cART-treatment. The

shaded area indicates cART-treatment. Data are presented as

mean ± standard deviation. *P\ 0.05 and **P\ 0.01 are consid-

ered as significant differences in paired t test.
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ratio in mice, whereas cART-treatment normalized the

ratio (Fig. 3C). The dynamic changes of hCD4? and

hCD8? T cells over time of infection and treatments were

monitored (Fig. 3D). HIV-1 infection induced a typically

rapid decline of hCD4? T cells and a compensatory

increase of hCD8? T cells, and the cART-treatment nor-

malized these parameters (Fig. 3D). To sum up, these data

demonstrate that HIV-1 infection of humanized mice can

recapitulate typical CD4? T cell and CD8? T changes

observed in human infections, and such abnormality of T

cell dynamics can be reversed by cART-treatment, sug-

gesting such a model could be used to examine HIV-1

pathogenesis in vivo.

The Examination of Human T-lymphocyte
Changes in Tissues of HIV-1 Infected B-NSG Mice

Having demonstrated the recapitulation of T cell dynamic

features of HIV infection in human peripheral blood, we

went on to investigate whether the B-NSG mice can also be

used to outline major features of human HIV-1 infection in

tissues and whether primary infection starts and latent

reservoir virus may form. The new experimental proce-

dures include harvesting tissue samples in addition to the

transplantation, infection, cART treatment steps as per-

formed in previous experiments (Fig. 4A). About 2% of

hCD45? cell subset was observed in liver, whereas 20%–

80% of hCD45? cell population were observed in spleen

and bone marrow (BM) after PBMC transplantation, and

these numbers were not altered significantly by HIV-1

infection and cART-treatment (Fig. 4B). By quantifying

viral RNA copies at 4 w.p.i., HIV-1 replication was

observed in spleen and BM, suggesting a successful

infection happened; and viral replication could be sup-

pressed to below the level of detection after 3-weeks

cART-treatment (Fig. 4C). Accompanied with a successful

virological response to treatment, there was limited

reconstruction of CD4? and CD8? T cell subsets in liver

(less than 2% of the whole cells population), but greater

reconstruction in spleen and BM. In spleen, CD3? and

CD8? T subsets displayed 15%–35% and 10% recon-

struction, respectively; in BM, CD3? and CD8? T subsets

displayed 8% and 4% reconstruction, respectively

(Fig. 4D). Similar to that being observed in the peripheral

blood, HIV-1 infection for 4-weeks reduced CD3? T cell

but increased CD8? T-cell frequency, and cART-treatment

for 3-weeks partially normalized these cell population

(Fig. 4D). Taken together, these results demonstrate that

the HIV-1 infection-induced changes of human T-lym-

phocytes can also be recapitulated in several tissues of

HIV-1 infected B-NSG mice.

Discussion

Humanized mouse models have been widely used to

investigate human haematopoiesis, innate and adaptive

immunity, autoimmunity, infectious diseases, cancer biol-

ogy and regenerative medicine (Shultz et al. 2007). In the

HIV-1 field, the BLT and Hu-thy/liv mice have previously

been used to elucidate viral immuno-pathogenesis and to

evaluate strategies for HIV-1 prevention and treatment.

These humanized mouse models need to be implanted a

piece of fetal liver tissue between two pieces of fetal thy-

mus like sandwiches. Although those models have a more

complete thymus development process and can generate an

adaptive immune response, the technical and traumatic

surgery, the acquisition of human tissue and the over a

2-month rebuilding cycle bring many difficulties.

The B-NSG mice used in this study have severe immune

defect phenotype and are suitable for the transplantation

and growth of human PBMCs and HSCs (Ishikawa et al.

2005; Strowig et al. 2011). In this study, we construct a

more convenient model of HIV-1 infection using human-

ized B-NSG mice. At as early as 3-weeks post-transplan-

tation, these mice showed repopulation of human CD45?

cells in peripheral blood, and these human CD45? cells

were mainly comprised of CD4? and CD8? T cells. These

reconstructed CD4? T cells mainly expressed the HIV-1

co-receptor CCR5, and the infection of these humanized

mice with CCR5-tropic HIV-1/JR-CSF induced viremia

within 1-week. HIV-1 infection induced a rapid CD4? T

cell depletion and a CD8? T cell increase, which recapit-

ulated the major features of acute HIV-1 infection in

humans. Therefore, these HIV-1 infected B-NSG mice -

provide a model suitable for studying HIV-1 induced

CD4? T cell decline and evaluating blocking strategies for

HIV-1 transmission. Moreover, our data show that the

administration of cART suppressed viral replication to an

undetected level. Therefore, our mouse model may have

potential to use to evaluate HIV-1 latency-reversing agents

and strategies for latency eradication. Furthermore, the

reconstruction of the human CD4? and CD8? T cells in

spleen and BM also support the usage of this model for

studying viral dynamic and host immune responses in

tissues.

In fact, transplanting human PBMCs to construct HIV-1

infected mice models have been reported (Kim et al. 2016;

Wu et al. 2016). In the Wu’s and Kim’s models, the

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice were used, and i.p.

injection for engraft was adopted. In our study, the B-NSG

(NOD-PrkdcscidIl2rgtm1/Bcgen) mice was used, which are

more suitable for the transplantation and growth of human

PBMCs and HSCs. Further, we used i.v. injection of

PBMCs, instead of their i.p. route. The i.v route has
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advantages for humanization, by which a significantly

higher level of human CD45 cells engraftment can be

acquired than that of through i.p. route. The i.v. injection

can directly put human PBMCs into the circulation system,

whereas for i.p. injection, a period of 7–14 days is required

for human PBMCs to drain from the peritoneal cavity into

the circulation. Thus, i.v. injection has the ability to engraft

higher levels of human PBMCs at lower donor cell doses

(5 9 106 cells/mouse used in our study), permitting the

better reconstruction; further, i.v. injection permits

immediate interaction between the human immune system

with the allograft (King et al. 2008). Additionally, for

cART-treatment to suppress HIV-1 infection, we used i.p.

injection of drugs instead of oral administration in Kim’s

model, guaranteeing the same dose of drugs per mouse per

day.

To suppress HIV-1 infection in our mice model, the

cART regimens composed of nucleoside reverse tran-

scriptase inhibitor TDF, nucleoside reverse transcriptase

inhibitor FTC and integrase inhibitor RAL were used. The
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Fig. 4 The reconstruction of human T-lymphocytes in tissues of

B-NSG mice and viral infection. A Schematic illustration of HIV-1

infection, cART treatment and tissue harvest. B Reconstruction

evaluation by detecting hCD45? cell. Humanized mice were infected

by HIV-1 and then treated with cART as above, and the hCD45? cells

in different tissues were detected with flow cytometry. C Viral

replication in different tissues was quantified by real-time (RT-) PCR

to detect the production of gag mRNA. D The distribution of hCD4?

and hCD8? T cells in different tissues was evaluated. Data are

presented as mean ± standard deviation. *P\ 0.05 and

***P\ 0.001 are considered as significant differences in paired t test.
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triple combination of TDF/FTC/RAL is currently used for

clinical treatment of patients, therefore, to recapitulate

patient treatment, this drug-combination has been widely

used in the HIV-infected humanized mice models

(Honeycutt et al. 2013; Satheesan et al. 2018).

We appreciate that the humanized mouse model also has

deficiencies. For example, the engrafted human PBMCs

can only differentiate human T cells, not other cells which

may affect T cells’ functions. A modified strategy that uses

human CD34? hematopoietic stem cell for injection may

provide an opportunity to markedly improve the reconsti-

tution of other elements of the human immune system both

in tissues and peripheral blood (McDermott et al. 2010;

Covassin et al. 2013).

In summary, in this study, we construct a rapid and

convenient humanized mouse model for HIV-1 infection

using B-NSG mice. The establishment of HIV-1 infected

humanized B-NSG mice not only provides a model to

study virus invasion-induced T cell dynamic changes but

also offers an effective tool for evaluating antiviral

strategies.
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