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Abstract
The virus receptors are key for the viral infection of host cells. Identification of the virus receptors is still challenging at

present. Our previous study has shown that human virus receptor proteins have some unique features including high

N-glycosylation level, high number of interaction partners and high expression level. Here, a random-forest model was

built to identify human virus receptorome from human cell membrane proteins with an accepted accuracy based on the

combination of the unique features of human virus receptors and protein sequences. A total of 1424 human cell membrane

proteins were predicted to constitute the receptorome of the human-infecting virome. In addition, the combination of the

random-forest model with protein–protein interactions between human and viruses predicted in previous studies enabled

further prediction of the receptors for 693 human-infecting viruses, such as the enterovirus, norovirus and West Nile virus.

Finally, the candidate alternative receptors of the SARS-CoV-2 were also predicted in this study. As far as we know, this

study is the first attempt to predict the receptorome for the human-infecting virome and would greatly facilitate the

identification of the receptors for viruses.
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Introduction

Receptor-binding is the first step for viral infection of host

cells. Proteins are considered to be the more ideal receptors

for viruses due to their higher binding affinity and speci-

ficity than carbohydrate and lipid (Baranowski et al. 2001;

Casasnovas 2013; Dimitrov 2004; Li 2015; Wang 2002).

Lots of human virus receptors have been identified. In

addition, it is not a random process for viruses to choose

proteins as their receptors. Previous studies have shown

that the proteins that are abundant in the surface of host

cells or have relatively low affinity for their natural ligands

are the preferred receptors for viruses (Dimitrov 2004;

Wang 2002). Moreover, based on a collection of 119

mammalian virus receptors, our recent study has further

revealed that human virus receptor proteins have higher

level of N-glycosylation, higher number of interaction

partners in the human protein–protein interaction (PPI)

network and higher expression level in 32 common human

tissues compared to other cell membrane proteins (Zhang

et al. 2019). The results obtained from these studies could

facilitate the identification of human virus receptors.

Identification of virus receptors in host cells is chal-

lenging. Currently, several experimental methods have

been developed for identifying virus receptors. The first

approach is to select candidate membrane proteins that can

bind to the virus receptor-binding proteins (RBPs) by

affinity purification and mass spectroscopy (Free et al.

2009; Ryu 2016). The second approach is firstly to identify

monoclonal antibodies which can block the virus entry, and

then take the membrane proteins to which the monoclonal

antibodies bind as candidate receptor proteins (Minor et al.
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1984; Ryu 2016). The third approach is to identify virus

receptors by functional cloning selection based on the

cDNA expression library (Ryu 2016). The proteins that can

enable viral infection of the non-susceptible cells after

transfection are considered as the receptor candidates.

However, the identification of virus receptors is still time-

consuming and difficult at present. Besides, the limitations

on scalability have hampered the large-scale identification

of viral receptors. Therefore, it is urgent to develop com-

putational methods for identification of the human virus

receptors.

Previous studies have developed several computational

models for predicting the PPIs between viruses and hosts

which can help identify virus receptors (Lasso et al. 2019;

Yan et al. 2019). For example, Lasso et al. (2019) devel-

oped an in silico computational framework (P-HIPSTer)

that employed the structural information to predict more

than 280,000 PPIs between 1001 human-infecting viruses

and humans, and made a series of new findings about

human-virus interactions. The predicted PPIs between viral

RBPs and human cell membrane proteins can be used to

identify virus receptors. Here, a computational model was

developed to predict the receptorome of the human-infecting

virome based on the features of human virus receptors and

protein sequences. Furthermore, the combination of this

computational model with the PPIs predicted in Lasso’s

work was further used to predict the receptors for 693

human-infecting viruses. The results of this study would

greatly facilitate the identification of human virus

receptors.

Materials and Methods

Source of Human Virus Receptors, Human Cell
Membrane Proteins and Human Membrane
Proteins

A total of 90 human virus protein receptors were obtained

from the viralReceptor database (available at http://www.

computationalbiology.cn:5000/viralReceptor) that was

developed in our previous study (Zhang et al. 2019).

Human cell membrane proteins and human membrane

proteins were obtained from the UniProtKB/Swiss-Prot

database on February 21, 2020. The human proteins with

the words of ‘‘cell membrane’’ and ‘‘cell surface’’ in the

field of ‘‘Subcellular location’’ were considered to be

human cell membrane proteins. The human proteins with

the words of ‘‘membrane’’ and ‘‘cell surface’’ in the field of

‘‘Subcellular location’’ were considered to be human

membrane proteins. A total of 3642 human cell membrane

proteins and 7663 human membrane proteins were

obtained.

Features of the Human Virus Protein Receptors
and Protein Sequences

The N-glycosylation sites of the human proteins mentioned

above were obtained from the UniprotKB/Swiss-Prot

database. The N-glycosylation sites of proteins without

annotation in the UniprotKB/Swiss-Prot database were

predicted with NetNGlyc 1.0 (available at http://www.cbs.

dtu.dk/services/NetNGlyc/) (Gupta et al. 2004). The

N-glycosylation level of these proteins was defined as the

number of N-glycosylation sites per 100 amino acids.

To calculate the node degree of the human proteins in

the human PPI network, firstly, the human PPIs with the

combined scores greater than 400 were extracted from the

STRING database (version 10.5) (Szklarczyk et al. 2015)

and were used to form the human PPI network. Then, the

node degree was calculated with the function of degree in

the R package igraph (version 1.2.4.2) (Csardi and Nepusz

2006).

The expression level of the human genes in 32 common

human tissues was obtained from the Expression Atlas

database (Petryszak et al. 2016) on February 6, 2018. Since

there were strong correlations between the gene expression

level in different tissues, the principal component analysis

(PCA) method was used to reduce the correlations with the

function of PCA in the package scikit-learn (version

0.21.3) (Pedregosa et al. 2011) in Python (version 3.6.7).

Only the first principal component was used to measure the

expression level of human genes, which explained 95% of

the total variance.

The amino acid composition (AAC) and the frequencies

of k-mers with two amino acids were calculated for each

human protein with a Python script.

Machine Learning Modeling

To distinguish human virus receptors from other human

cell membrane proteins using machine learning models, the

known human virus receptors were chosen as positive

samples. Since the human cell membrane proteins may

contain virus receptors unidentified yet, the human mem-

brane proteins were taken as negative samples after

excluding the human cell membrane proteins.

Because not all human proteins were observed in the

used human PPI network or showed the observed expres-

sions in the available data, only the human proteins that

possess all the three protein features, i.e., the N-glycosy-

lation level, node degree and expression in common human

tissues, were used in the modeling. Besides, the sequence

redundancy in both human virus receptor proteins and

human membrane proteins was removed using CD-HIT

(version 4.8.1) (Fu et al. 2012) at the 70% identity level.
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Finally, a total of 88 human virus receptors and 1743

human membrane proteins were used in the machine

learning modeling (Supplementary Table S1).

The random-forest (RF) model is an ensemble machine

learning technique using multiple decision trees and can

handle data with high variance and high bias, while the risk

of over-fitting can be significantly reduced by averaging

multiple trees. Therefore, the RF model was chosen to

distinguish human virus receptors from other human cell

membrane proteins. Since the number of positive samples

(human viral receptors) was much smaller than that of

negative samples (human membrane proteins), the function

of BalanceRandomForest in the package imbalanced-learn

(version 0.5.0) (Chen et al. 2004) in Python was used to

deal with the imbalanced positive and negative samples

with the parameter of n_estimators set to be 100.

When building the RF model based on AAC or the

k-mers with two amino acids, the features of AAC or two-

amino-acids k-mers were ranked based on the feature

importance which was provided by the function of ‘‘fea-

ture_importances_’’ in the package scikit-learn in Python.

Then, the top N (N = 1–20 for AAC and N = 1–400 for

two-amino-acids k-mers) features were used in the RF

models to investigate the influence of feature number used

on the model performances.

Five times of five-fold cross-validations were conducted

to evaluate the predictive performances of the RF model

with the function of StratifiedKFold in the package scikit-

learn in Python. The predictive performances of the RF

model were evaluated by the area under receiver operating

characteristics curve (AUC), accuracy, sensitivity and

specificity.

Validation of the RF Model by Ranking
the Receptor Candidates

The predicted PPIs between human-infecting viruses and

human were obtained from the database of P-HIPSTer

(available at http://phipster.org/) (Lasso et al. 2019) on

November 1, 2019. A total of 9395 pairs of interactions

between viral RBPs and human cell membrane proteins

with the likelihood ratio (LR) C 100 were extracted for

further analysis, which included 718 viral RBPs and 314

human cellmembrane proteins. TheRBPs of human-infecting

viruses were compiled from three sources: the ViralZone

database (Masson et al. 2012), the UniprotKB database in

which viral proteins were annotated with GO terms ‘‘viral

entry into host cell’’ or ‘‘virion attachment the host cell’’,

and the literatures related to viral RBPs. The viruses

belonging to the same viral family were supposed to use the

same RBPs. For example, all coronaviruses were supposed

to take the spike protein as RBPs.

To evaluate the ability of the RF model in identification

of virus receptors, 25 pairs of experimentally validated

interactions between viral RBPs and receptors, and the

predicted PPIs between these viral RBPs and human cell

membrane proteins were extracted from the P-HIPSTer

database. For each viral RBP, the predicted RBP-interacting

human cell membrane proteins were ranked by either the

LR provided in Lasso’s work, or the predicted score pro-

vided by the RF model. Then, the ranks of the real

receptors were analyzed, and the rank percentage of each

real receptor was calculated by dividing the rank by the

number of RBP-interacting human cell membrane proteins.

When ranking the RBP-interacting proteins by the RF

model, the performance of the RF model may be over-

estimated due to the sequence similarity between the RBP-

interacting proteins and human proteins in the modeling.

To reduce the above effect, for each pair of viral RBP and

receptor, the predicted RBP-interacting human cell mem-

brane proteins were clustered with human proteins used in

the modeling using CD-HIT at a 50% identity level. All the

proteins which were clustered with RBP-interacting pro-

teins were excluded in the modeling.

Data Availability

All data used in this study were obtained from public

databases as mentioned above and were available in the

Supplementary Tables.

Results

Development of Random-Forest Models
for Predicting the Receptorome of the Human-
Infecting Virome

Our previous studies have shown that human virus protein

receptors have unique features including high N-glycosy-

lation level, high number of interaction partners in the

human PPI network, and high expression level in 32

common human tissues (Zhang et al. 2019). To identify the

potential receptors of the human-infecting virome, firstly, a

RF model was built to distinguish the human virus receptor

proteins from other human membrane proteins based on the

above features. The RF model built based on individual

protein feature achieved an AUC ranging from 0.51 to 0.61

in five-fold cross-validations (Table 1). The combination

of all three features greatly improved the RF model with

the AUC and the prediction accuracy equaling to 0.70 and

0.72, respectively (Table 1).

For comparison, we also developed RF models to dis-

tinguish the human virus receptors from other human

membrane proteins based on protein sequences. The amino
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acid composition (AAC) of protein sequences was firstly

used as features in the modeling. The AUC of RF models

increased as the number of most important features (N) of

AAC used increased from 1 to 10 (Fig. 1A). Then, it began

to decrease when N was greater than 10. The RF model

based on top ten features of AAC had an AUC of 0.71 and

a prediction accuracy of 0.70 which were similar to that of

the model based on a combination of protein features

mentioned above. Further studies showed that the RF

model based on the frequencies of k-mers with two amino

acids didn’t improve much compared to the model based

on AAC (Fig. 1B). Therefore, only top ten features of AAC

were used in the modeling based on protein sequences to

reduce the complexity of the model.

To further improve the model for predicting the recep-

torome of the human-infecting virome, the protein features

and the top ten features of AAC of protein sequences were

incorporated in the modeling. The RF model achieved an

AUC of 0.76. The prediction accuracy, sensitivity and

specificity of the model were 0.76, 0.75 and 0.76, respec-

tively (Table 1). The model combining both the protein

features and top ten features of AAC of protein sequences

was used for further analysis.

Prediction of the Receptorome for the Human-
Infecting Virome

Based on the RF model, the receptorome was predicted

from human cell membrane proteins. A score ranging from

0 to 1 was assigned to each human cell membrane protein.

The proteins with high scores are more likely to be virus

receptors. A total of 1424 proteins with scores greater than

0.5 were considered to constitute the receptorome of the

human-infecting virome. Table 2 listed top 20 human cell

membrane proteins and the relevant scores (for all human

cell membrane proteins, please see Supplementary

Table S2).

Prediction of Virus-Receptor Interactions
for Human-Infecting Viruses

Then, the prediction of virus-receptor interactions was

investigated. In the previous study, Lasso et al. (2019)

predicted 282,528 pairs of PPIs between human and 1001

human-infecting viruses. Based on the study, 9395 pairs of

PPIs between 718 viral RBPs from 693 human-infecting

viruses, and 314 human cell membrane proteins were

extracted for further analysis (see Supplementary

Table 1 The predictive

performances of random-forest

models using different sets of

features.

Model with different sets of features Feature number Acc Sen Spe AUC

N-gly 1 0.59 0.58 0.59 0.59

PPI 1 0.62 0.60 0.62 0.61

Expression 1 0.50 0.51 0.50 0.51

N-gly ? PPI ? Expression 3 0.72 0.68 0.72 0.70

AAC (top 10) 10 0.70 0.73 0.70 0.71

N-gly ? PPI ? Expression ? AAC (top10) 13 0.76 0.75 0.76 0.76

N-gly N-glycosylation, PPI node degree in human PPI network, Expression expressions in 32 human

tissues, AAC amino acid composition, Acc accuracy, Sen sensitivity, Spe specificity, AUC area under

receiver operating characteristic curve.

Fig. 1 The AUC of the random-forest model based on top N (N = 1–20 for AAC, N = 1–400 for two-amino-acid k-mers) features of AAC (A) or
two-amino-acid k-mers of protein sequences (B).
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Table S3). A viral RBP was predicted to interact with 1–65

human cell membrane proteins, with a median of 10. For

each viral RBP, the RBP-interacting cell membrane pro-

teins were ranked by the score provided by the RF model to

select the most likely receptor (Supplementary Table S3).

To validate the accuracy of the ranking by the RF

model, 25 pairs of experimentally validated interactions

between viral RBPs and receptors were extracted. For each

pair of viral RBP and its receptor, the rank of the real

receptor among the predicted RBP-interacting proteins was

obtained, and then the related rank percentage was calcu-

lated (Materials and Methods). Eight real receptors were

ranked in top one by the RF model (Table 3). Besides,

nearly 70% (17/25) of real receptors were ranked in top

three. On average, the real receptors had a rank percentage

of 0.20 among all the RBP-interacting human cell mem-

brane proteins, suggesting that the real receptors would be

ranked in the top 20% of all candidates by the RF model.

The LR provided in Lasso’s work can also be used to

rank the RBP-interacting proteins. 12 of 25 pairs of

experimentally validated viral RBP-receptor interactions

had LRs available from Lasso’s work. For comparison, the

viral RBP-interacting human cell membrane proteins were

ranked by LR. No real receptor was ranked in top one, and

only two real receptors were ranked in top three when

ranking RBP-interacting human cell membrane proteins by

using LR. On average, the median rank percentage of real

receptors was 0.43 when ranking was conducted by the LR,

while that was 0.14 by the RF model (Table 3).

Prediction of Candidate Alternative Receptors
for SARS-CoV-2

Previous studies have shown that the ACE2 protein, the

receptor of SARS-CoV-2 (Hoffmann et al. 2020; Zhou

et al. 2020), shows a low expression level in the lung and

the upper respiratory tract (Qi et al. 2020; Zhang et al.

2020). The results indicate that SARS-CoV-2 may have

alternative receptors. We investigated the prediction of the

alternative receptors for SARS-CoV-2. Lasso’s study has

predicted PPIs between 28 human cell membrane proteins

which were members of the receptorome of human-infecting

viruses, and the spike proteins of two coronaviruses,

including Severe Acute Respiratory Syndrome-CoV and

Middle East Respiratory Syndrome-CoV. We supposed

that the SARS-CoV-2 is very likely to use these spike-

interacting proteins as its alternative receptors. These

spike-interacting proteins were ranked by the scores pro-

vided by the RF model (Fig. 2). The expression level of

these spike-interacting proteins in 32 common human tis-

sues were shown in Fig. 2. Most of them had higher

expression level than ACE2 in the lung, such as APP, EZR,

CD4 and so on.

Discussion

The identification of receptors for human-infecting viruses

is critical for understanding the interactions between viru-

ses and human. Our previous studies have shown that

human virus receptor proteins have some unique features

compared to other cell membrane proteins, including high

N-glycosylation level, high number of interaction partners

and high expression level. This study further built a RF

Table 2 Top 20 human cell membrane proteins and their scores assigned by the random-forest model.

Gene

name

Protein name RF

score

Gene

name

Protein name RF

score

ITGAV Integrin alpha-V 0.959 PTPRJ Receptor-type tyrosine-protein phosphatase eta 0.903

SCARB1 Scavenger receptor class B member 1 0.948 KDR Vascular endothelial growth factor receptor 2 0.903

NCAM1 Neural cell adhesion molecule 1 0.943 IL6ST Interleukin-6 receptor subunit beta 0.900

ITGB1 Integrin beta-1 0.940 SELP P-selectin 0.898

IGF2R Cation-independent mannose-6-phosphate

receptor

0.928 HSPA8 Heat shock cognate 71 kDa protein 0.895

ITGA6 Integrin alpha-6 0.927 EGFR Epidermal growth factor receptor 0.895

HLA-
DRA

HLA class II histocompatibility antigen, DR

alpha chain

0.926 TNFRSF14 Tumor necrosis factor receptor superfamily

member 14

0.895

ITGA3 Integrin alpha-3 0.914 IL7R Interleukin-7 receptor subunit alpha 0.892

CR2 Complement receptor type 2 0.911 KIT Mast/stem cell growth factor receptor Kit 0.891

LDLR Low-density lipoprotein receptor 0.911 SLAMF1 Signaling lymphocytic activation molecule 0.891
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model for identifying human virus receptors from human

cell membrane proteins with an accepted accuracy. Based

on the RF model, the receptorome for the human-infecting

virome was predicted, which included a total of 1424

human cell membrane proteins. The results could facilitate

the identification of human virus receptors.

In the previous study, Lasso et al. (2019) developed a

computational model for predicting PPIs between human-

infecting viruses and human. A variable number of human

cell membrane proteins were predicted to interact with

viral RBPs. To further select the potential receptors for

viruses, both the LR and the RF model were used to rank

the viral RBP-interacting human cell membrane proteins.

The RF model was found to rank the real receptors better

than the LR in a small validation dataset, suggesting that

the performance of the RF model may be superior to that of

the LR in selecting the real receptors from the predicted

RBP-interacting human cell membrane proteins. The

Table 3 The ranks of real virus receptors among the RBP-interacting human cell membrane proteins by likelihood ratio (LR) and random-forest

(RF) score.

Virus name RBP Real viral receptor Num of RBP-interacting proteins Rank by LR Rank by RF score

SARS-CoV S ACE2 31 –* 22

MERS-CoV S DPP4 8 – 2

Echovirus E6 VP1 CD55 13 5 2

Echovirus E11 VP1 CD55 9 4 2

Echovirus E7 VP1 CD55 7 – 3

Echovirus E13 VP1 CD55 11 4 1

Echovirus E20 VP1 CD55 12 5 1

Echovirus E29 VP1 CD55 13 6 2

Echovirus E33 VP1 CD55 13 6 1

Enterovirus C VP1 PVR 5 – 1

Hepacivirus C E1 EGFR 17 10 2

MACV GPC TFRC 2 – 1

Measles virus H NECTIN4 18 – 18

Measles virus H SLAMF1 18 2 2

Hendra virus G EFNB2 5 – 1

Nipah virus G EFNB2 5 – 1

HAdV-A L5 CXADR 25 – 16

HAdV-C L5 CXADR 5 4 5

HAdV-D L5 CXADR 28 4 15

HAdV-E L5 CXADR 33 3 24

HSV-1 US6 TNFRSF14 28 – 3

HSV-1 US6 NECTIN1 28 – 11

HSV-2 US6 NECTIN1 34 – 14

HSV-2 US6 TNFRSF14 34 23 3

HIV-1 env CD4 21 – 1

Top 1 0 8 (3)#

Top 3 2 17 (9)#

Top 5 8 18 (10)#

Median rank percentage 0.43 0.20 (0.14)#

The median rank percentage of real virus receptors among RBP-interacting human cell membrane proteins, and the number of real virus

receptors among top one, three and five ranks were summarized at the bottom.

MACV machupo mammarenavirus, HAdV-A human mastadenovirus A, HAdV-C human mastadenovirus C, HAdV-E human mastadenovirus E,

HAdV-D human mastadenovirus D, HSV-1 human alphaherpesvirus 1, HSV-2 human alphaherpesvirus 2, HIV-1 human immunodeficiency virus

1.

*No LR was provided in Lasso’s work since there were resolved complex structures between the RBP and the receptor.
#The number in brackets referred to those when only considering 12 pairs of viral RBP-receptor interaction with LRs available from Lasso’s

work.
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combination of the RF model and the RBP-interacting

human cell membrane proteins predicted in Lasso’s work

enabled the prediction of receptors for 693 human-infecting

viruses (Supplementary Table S3). Nevertheless, more

efforts are needed to validate these candidate receptors in

future studies.

There are some limitations to this study. Firstly, the

number of human virus receptor proteins was much smaller

than that of human membrane proteins in the modeling,

which may hinder accurate modeling. Thus, the under-

sampling method was used to deal with the imbalance

problem. Secondly, the performance of the RF model was

modest in discriminating human virus receptor proteins

from human membrane proteins. More efforts are still

needed to improve the model. Thirdly, although the RF

model can be used to predict the receptorome of human-

infecting virome, it is not feasible to use the model to

identify the receptors for a specific human-infecting virus.

The combination of the RF model with the model of PPI

predictions such as Lasso’s work can help identify virus-

receptor interactions.

In conclusion, this study for the first time built a com-

putational model for predicting the receptorome of the

human-infecting virome. The results can facilitate the

identification of human virus receptors in either computa-

tional or experimental studies.
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