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Abstract
Despite the success of antiretroviral therapy (ART), efforts to develop new classes of antiviral agents have been hampered by

the emergence of drug resistance. Dibenzo-indole-bearing aristolactams are compounds that have been isolated from various

plants species and which show several clinically relevant effects, including anti-inflammatory, antiplatelet, and anti-

mycobacterial actions. However, the effect of these compounds on human immunodeficiency virus type 1 (HIV-1) infection

has not yet been studied. In this study,we discovered an aristolactamderivative bearing dibenzo[cd,f]indol-4(5H)-one that had

a potent anti-HIV-1 effect. A structure-activity relationship (SAR) study using nine synthetic derivatives of aristolactam

identified the differing effects of residue substitutions on the inhibition of HIV-1 infection and cell viability. Among the

compounds tested, 1,2,8,9-tetramethoxy-5-(2-(piperidin-1-yl)ethyl)-dibenzo[cd,f]indol-4(5H)-one (Compound 2) exhibited

themost potent activity by inhibitingHIV-1 infection with a half-maximal inhibitory concentration (IC50) of 1.03 lmol/L and

a half-maximal cytotoxic concentration (CC50) of 16.91 lmol/L (selectivity index, 16.45). The inhibitory effect of the

compounds on HIV-1 infection was linked to inhibition of the viral replication cycle. Mode-of-action studies showed that the

aristolactam derivatives did not affect reverse transcription or integration; instead, they specifically inhibited Tat-mediated

viral transcription. Taken together, these findings show that several aristolactam derivatives impaired HIV-1 infection by

inhibiting the activity of Tat-mediated viral transcription, and suggest that these derivatives could be antiviral drug candidates.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) is the

major causative agent of acquired immunodeficiency syn-

drome (AIDS) (Mitsuya et al. 1985). Although treatment

with highly active antiretroviral therapy (HAART) main-

tains viral levels below the level of detection and extends a

patient’s lifespan, these treatments are limited by increas-

ingly frequent drug-resistant mutations, adverse side

effects, and the high cost of long-term HAART (Gibson

et al. 2019; Margolis et al. 2014). In addition, latent

reservoirs of HIV-1-infected cells can persist in a patient,

which prevents clearance of the virus even during HAART

(Churchill et al. 2016). Therefore, efforts are under way to

develop new agents that target key steps in the HIV-1 life

cycle.

Numerous naturally derived products have been sug-

gested as inhibitors of HIV-1 infection, including calano-

lides (reverse transcriptase (RT) inhibitors), kuwanon-L

(an RT and integrase (IN) inhibitor), patentiflorin A (an RT

and IN inhibitor), and betulinic acid (a viral maturation

inhibitor) (Cary and Peterlin 2018). Despite the high

potency of these natural products against HIV-1, their use
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as therapeutics could be restricted due to the difficulty of

high-yield purification or large-scale synthesis. In the field

of synthetic organic chemistry, unique structure-bearing

purine-based compounds, such as seliciclib (also called

R-roscovitine or CYC202) (Agbottah et al. 2005), and

several purine derivatives bearing aryl groups (Yuan et al.

2007) are known to inhibit HIV-1 infection; therefore, to

improve their anti-HIV-1 activity, derivatives of these

compounds have been explored. Some derivatives bearing

an indole core (which is structurally similar to purine) have

been investigated as anti-HIV-1 agents (Xu and Lv 2009).

The benzodiazepine derivative (Ro 5-3335) containing

benzene has been intensively investigated as a potent anti-

HIV-1 agent (Hsu et al. 1991). Interestingly, both purine

and the benzene-based compounds described above have

been observed to impede HIV-1 infection by inhibiting

Tat-dependent viral transcription (Mousseau and Valente

2012), which is a pivotal step in viral replication. There-

fore, this step is considered to be a potential target for

blocking HIV replication. As such, numerous studies have

attempted to identify Tat-dependent transcriptional inhibi-

tors such as Durhamycin A (Jayasuriya et al. 2002), beta-

carboline derivatives (Yu et al. 2004) and Didehydro-

Cortistatin A (dCA) (Mousseau et al. 2012) from naturally

derived compounds. Although individual structures con-

taining either indole or benzene substituents have anti-

HIV-1 effects, the potential anti-HIV-1 effects of com-

pounds containing hybrid benzene–indole cores, such as

aristolactams, have not yet been investigated.

Aristolactams bearing unique dibenzo-indole cores are

recognized as an important family of alkaloids due to their

potent biological activities, including anti-inflammatory,

antiplatelet, anti-mycobacterial, neuro-protective, and anti-

tumor effects. Aristolactams have been isolated from sev-

eral plant species and used as traditional medicines (Chia

et al. 2000; Kim et al. 2004; Kumar et al. 2003; Tsai

et al. 2005; Zhang et al. 2007). Several aristolactam

derivatives have been successfully synthesized, and some

of these have exhibited potent biological activity; Struc-

ture-activity relationship studies have explored the chem-

istry needed to attain specific biological activities in an

effort to advance clinical applications (Bedini et al. 2005;

Choi et al. 2009; Reddy and Jeganmohan 2017; Yao and

Larock 2005). Despite the multi-potent activity of aristo-

lactams, their potential anti-HIV-1 effects, including the

contribution of their unique structural feature—the

dibenzo-indole core—have not yet been elucidated.

For the purposes of this study, we identified an aristo-

lactam derivative from a synthetic organic compound

library that inhibited HIV-1 infection. The effect of sub-

stituting side chains on the aristolactam derivative on anti-

HIV-1 activity and cytotoxicity was investigated. In addi-

tion, the mode of anti-HIV-1 action of the aristolactam

derivatives was identified as inhibition of Tat-mediated

viral transcription rather than inhibition of viral reverse

transcription or integration.

Materials and Methods

Cells, Virus, and Reagents

The inhibition of HIV-1 infection by aristolactam deriva-

tives was tested in TZM-bl cells, which contain long ter-

minal repeat (LTR)-driven firefly luciferase and lacZ (b-
galactosidase), and express human CD4, CXCR4, and

CCR5, in order to facilitate HIV-1 infection, as described

previously (Platt et al. 1998). bl-DTR (TZM-bl-derived

dual Tat reporter) cells were generated from TZM-bl cells

by transforming two doxycycline-inducible lentiviral

expression cassettes encoding flag-tagged tat and Renila-

luciferase genes; these cells were then used to determine

Tat-mediated HIV-1 transcriptional activity, as described

previously (Shin et al. 2017). TZM-bl and bl-DTR cells

were cultured in Dulbecco’s modified Eagle’s medium

supplemented with 1% penicillin–streptomycin and 10%

(v/v) heat-inactivated fetal bovine serum (all obtained from

Gibco-BRL, Gaithersburg, MD, USA). The bl-DTR cells

were additionally supplemented with 1 lg/mL puromycin

and 200 lg/mL zeocin. Peripheral blood mononuclear cells

(PBMCs) were purchased from AllCells (Alameda, CA,

USA) and cultured, as described previously (Yoon et al.

2015). HIV-1 clones pNL4-3 and AD8, as well as TZM-bl

and A3.01 cells, were obtained from the National Institute

of Health’s AIDS Research and Reference Reagent Pro-

gram (NIH, Bethesda, MD, USA). Organic chemical

compounds were provided by the Korea Research Institute

of Chemical Technology (KRICT) (Choi et al. 2009). The

chemicals were renamed as follows: (1-(2-(dimethy-

lamino)ethyl)-9-methoxybenzo[6,7]oxepino[4,3,2-cd]isoin-

dol-2(1H)-one (ID 262860): 1,2,8,9-tetramethoxy-5-(2-

(pyrrolidin-1-yl)ethyl)dibenzo[cd,f]indole-4(5H)-one\Com-

pound 1[ : 1,2,8,9- tetramethoxy-5-(2-(piperidin-1-yl)ethyl)-

dibenzo[cd,f]indole-4(5H)-one\Compound 2[ : 5-(2-(diethy-

lamino)ethyl)-tetramethoxydibenzo[cd,f]indole-4(5H)-one\
Compound 3[ : 5-(2-(diethylamino)ethyl)-1,2-dimethoxy-

dibenzo[cd,f]indole-4(5H)-one\Compound 4[ : 1,2,9-tri-

methoxy-5-(2-(piperidin-1-yl)ethyl)dibenzo[cd,f]indole-4(5H)

-one\Compound 5[ : 1,2-dimethoxy-5-(2-piperidin-1-

yl)ethyl)dibenzo[cd,f]indole-4(5H)-one\Compound 6[ :

2-amino-5-(2-piperidin-1-yl)ethyl)dibenzo[cd,f]indole-4(5H)-

one\Compound 7[ : 8-fluoro-1,2-dimethoxy-5-(2-piper-

idin-1-yl)ethyl) dibenzo[cd,f]indole-4(5H)-one\Compound

8[ : 8-cloro-1,2-dimethoxy-5-(2-piperidin-1-yl)ethyl) dibenzo-

[cd,f]indole-4(5H)-one\Compound 9[ .
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Seliciclib, azidothymidine (AZT), adefovir (ADV), ral-

tegravir (RAL), and elvitegravir (ELV) were purchased

from Sigma Aldrich (St. Louis, MO, USA).

Inhibition of HIV-1 Infection

To determine the inhibitory effect of the compounds on

HIV-1 infection, TZM-bl cells were used, as described

previously (Shin et al. 2020), with some minor modifi-

cations. In brief, 2 9 104 cells were cultured in 96-well

plates for 24 h and then treated with compounds at a final

concentration of 3 lmol/L (single dose assay; Fig. 1 and

Table 1) or with 1:2 serially diluted compounds at con-

centrations ranging from 0 to 25 lmol/L (dose-dependent

assay; Table 2). At 1 h after treatment, the cells were

infected with the HIV-1NL4-3 virus at a multiplicity of

infection (MOI) of 1. After 48 h, the inhibitory effect of the

compounds was determined using a Bright Glo luciferase

assay kit (Promega). The infectivity data are presented as a

percentage relative to the DMSO control (vehicle).

The inhibitory effects of the compounds on viral repli-

cation were determined, as described previously (Shin

et al. 2020). In brief, 5 9 104 cells/well of A3.01 cells,

PBMCs and MOLT4-R5 cultured without activation were

infected with HIV-1NL4-3 or HIV-1AD8 at an MOI of 0.1 in

96-well plates for 4 h. After infection, the compounds were

added to the infected cells at a final concentration of 3

lmol/L. After 72 h of treatment, the inhibitory effect of the

compounds on viral replication was determined by mea-

suring the amount of p24, a HIV capsid protein, using an

HIV-1 p24 ELISA kit. Cell viability was determined using

the 3-2, 5-diphenyltetrazolium bromide (MTT)-based Pre-

stoBlue Cell Viability Reagent (Invitrogen) according to

the manufacturer’s instructions.
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Fig. 1 Comparison of the anti-HIV-1 effect of aristolactam deriva-

tives. TZM-bl cells (2 9 104 cells) were treated with 3 lmol/L of

each Compound 1 h prior to infection with the HIV-1NL4-3 strain at an

MOI of 1. After 48 h, viral infectivity was determined with a firefly

luciferase assay kit. Cell viability was assessed using an MTT-based

cell viability reagent. The tested compounds are as follows: A Chem-

ical structure of aristolactam derivatives and seliciclib;

B dibenzo[cd,f]indol-4(5H)-one (Compound 1), similar compounds

containing benzo[6,7]oxepino[4,3,2-cd]isoindol-2(1H)-one (ID

262860), and purine (seliciclib); C 50N substitution of 5-(2-(pyrro-

lidinyl)ethyl) (Compound 1), 5-(2-(piperidinyl)ethyl) (Compound 2),

5-(2-(diethylamino)ethyl) (Compound 3), and H-substitution at R6-R7

of 5-(2-(diethylamino)ethyl) (Compound 4) on dibenzo[cd,f]indol-

4(5H)-one; D methoxy-deleted forms on 5-(2-(piperidinyl)ethyl)

(Compound 2). The graphical data are presented as a value relative

to the vehicle (DMSO)-treated controls, as the mean ± SD (n = 3).

*P\ 0.05 and **P\ 0.01 compared with cells treated with the

vehicle.
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Inhibition of Tat-mediated Transcription

To determine the inhibitory effect of the compounds on

Tat-mediated transcription, a concentration–response assay

was performed, as described previously (Shin et al. 2020).

In brief, 1 9 104 bl-DTR cells cultured in a 100 lL med-

ium were treated with serial dilutions of the compounds

(0–25 lmol/L), after which the expression of Tat and

renilla luciferase was induced by adding 50 lL doxycy-

cline to achieve a final concentration of 50 ng/mL. After

24 h of treatment, the activities of Tat-induced firefly

luciferase and doxycycline-induced renilla luciferase were

determined using a dual luciferase assay kit (Dual Glo,

Promega), as described previously. The data are presented

as a percentage relative to the DMSO control (vehicle) in

the presence of doxycycline. The experiment was per-

formed in triplicate.

Reverse Transcriptase Assay

Reverse transcriptase activity was determined, as described

previously, with certain modifications (Clouser et al.

2010). In brief, after treatment with DNase I, 2 9 105

TZM-bl cells were treated with the indicated compounds

for 1 h prior to infection with HIV-1NL4-3 (at a MOI ratio

of 1). Sixteen hours after infection, cytosolic DNA from

the cells was isolated and the levels of reverse transcription

(RT) products were determined by quantitative PCR

(qPCR). The primers for RT products were 50-
GGTCCAAAATGCGAACCCAG-30 (forward) and 50-
TCTTGCTTTATGGCCGGGTC-30 (reverse). To deter-

mine the relative levels of the RT products, rRNA from the

lysed cells were analyzed with one-step quantitative RT-

PCR using the following primer sets for 18S rRNA: 50-
GTAACCCGTTGAACCCCATT-30 (forward) and 50-
CCATCCAATCGGTAGTAGGG-30 (reverse). The rela-

tive level of each RT product was analyzed using the delta/

delta CT method, as described previously (Shin et al.

2020).

Integrase Assay

To determine how the compounds inhibited HIV-1 infec-

tion, the integrase activity was assessed using an XpressBio

HIV-1 integrase assay kit, according to the manufacturer’s

protocols.

Table 1 Structure and inhibitory effect of aristolactam derivatives 1–9 on HIV-1 infection.

Compound R1 R3 R4 R6 R7 HIV-1 infectivity (%) Cell survival rate (%)

1 –CH2CH2N pyrrolidine OMe OMe OMe OMe 3.62 ± 0.27 88.07 ± 1.88

2 –CH2CH2N piperidine OMe OMe OMe OMe 16.61 ± 7.37 107.46 ± 9.21

3 –CH2CH2N–(CH2CH3)2 OMe OMe OMe OMe 47.78 ± 4.35 86.89 ± 1.97

4 –CH2CH2N–(CH2CH3)2 OMe OMe H H 42.71 ± 3.95 103.37 ± 5.57

5 –CH2CH2N piperidine OMe OMe OMe H 0.98 ± 0.27 106.63 ± 11.69

6 –CH2CH2N piperidine OMe OMe H H 8.32 ± 0.51 95.84 ± 2.26

7 –CH2CH2N piperidine NH2 H H H 18.69 ± 0.00 74.18 ± 1.17

8 –CH2CH2N piperidine OMe OMe H F 0.48 ± 024 85.50 ± 7.76

9 –CH2CH2N piperidine OMe OMe H Cl 1.65 ± 0.25 93.67 ± 2.12

Seliciclib 45.01 ± 1.99 103.57 ± 4.30

ID 262860 29.35 ± 1.33 46.34 ± 0.93

The inhibitory effects on HIV-1 infection and cell viability were determined in TZM-bl cells infected with HIV-1NL4-3 at an MOI of 1.

Table 2 Concentration–responses of aristolactam derivatives on

cytotoxicity and anti-HIV activity.

Compound IC50 (lmol/L)a CC50 (lmol/L)b SIc

1 0.69 ± 0.09 6.88 ± 0.31 9.94

2 1.03 ± 0.38 16.91 ± 3.22 16.45

3 3.73 ± 1.00 17.15 ± 0.34 4.59

4 3.07 ± 0.22 6.98 ± 0.09 2.27

5 1.07 ± 0.06 4.51 ± 0.96 4.23

6 1.06 ± 0.03 4.97 ± 0.62 4.70

7 2.00 ± 0.61 3.62 ± 0.15 1.80

8 0.55 ± 0.01 3.72 ± 0.01 6.74

9 0.44 ± 0.01 3.64 ± 0.08 8.31

Seliciclib 2.29 ± 0.40 25.49 ± 0.17 11.11

The inhibitory effects on HIV-1 infection and cell viability were

determined in TZM-bl cells infected with HIV-1NL4-3 at an MOI of 1.
aIC50: half-maximal inhibitory concentration.
bCC50: concentration that reduces cell viability by 50%.
cSI: selectivity index, i.e. the ratio of IC50 to CC50.
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Statistical Analysis

All data are expressed as the mean ± SD (n = 3). The data

were compared using a Student’s t test, and *P\ 0.05,

** P\ 0.01 was considered to be statistically significant.

All statistical analyses were performed using Prism soft-

ware (v.5.0; Graph Pad Software, San Diego, CA, USA).

Results

Aristolactam Derivative Inhibits HIV-1 Infection

Initially, a random screen of an organic compound library

identified an aristolactam derivative (Compound 1) that

inhibited HIV-1 infection. To explore whether the dibenzo-

indole moiety in the core of the aristolactam derivative is

critical for the inhibition of HIV-1 infection, the antiviral

effects of benzo[6,7]oxepino[4,3,2-cd]isoindol-2(1H)-one

(ID 262860), a compound that is structurally similar to

dibenzo[cd,f]indol-4(5H)-one (Compound 1), and selici-

clib, which bears a purine moiety that is structurally similar

to an indole moiety (Fig. 1A), were compared at a final

concentration of 3 lmol/L. As shown in Fig. 1B, the

compound bearing a benzo-oxepino-isoindol moiety (ID

262860) had a moderate inhibitory effect on HIV-1 infec-

tion and was cytotoxic. Seliciclib, a known inhibitor of

HIV-1 infection, had a moderate inhibitory effect on HIV-1

infection and was not cytotoxic. Dibenzo[cd,f]indol-4(5H)-

one (Compound 1) exhibited the greatest inhibitory effect

on HIV-1 infection and was slightly cytotoxic at the con-

centration tested (Fig. 1B and Table 1). To investigate

whether variation of the R1 side chain on dibenzo[cd,f]in-

dol-4(5H)-one influences the anti-HIV-1 effect, 5-(2-

(pyrrolidiny)lethyl) of Compound 1 was substituted to

5-(2-(piperidinyl)ethyl) (Compound 2) and 5-(2-(diethy-

lamino)ethyl) (Compound 3). Although the 5-(2-(piper-

idinyl)ethyl) (Compound 2) substitution inhibited HIV-1

infection slightly less than the Compound 1 containing

pyrrolidine, Compound 2 exhibited no cytotoxicity at the

same concentration. However, 5-(2-(diethylamino)ethyl)

(Compound 3) had a low inhibitory effect on HIV-1

infection and cell viability (Fig. 1C and Table 1). Since

5-(2-(piperidinyl)ethyl) (Compound 2) exhibited no cyto-

toxicity and had an efficient antiviral effect, we explored an

extended set of derivatives substituted at the R3-R4-R6-R7

position on Compound 2 in order to find agents that could

have a potent inhibitory effect on HIV-1 infection while

lowering toxicity. As shown in Fig. 1D and Table 1, the

substitution of R7-H (Compound 5) greatly improved the

inhibitory effect of the compound on HIV-1 infection

without increasing cytotoxicity. However, the additional

deletion of the methoxy moiety (Compound 6 and 7)

slightly reduced the inhibitory effect of the compound and

increased cytotoxicity, whereas substitution with R7-F

(Compound 8) or R7-Cl (Compound 9) greatly improved

the inhibitory effect on HIV-1 infection and decreased cell

viability (Fig. 1D and Table 1). The deletion effect of these

methoxy was not detected in a compound bearing the 5-(2-

(diethylamino)ethyl) moiety (Compound 4) (Fig. 1C).

These results show that the aristolactam derivatives con-

taining a dibenzo-indole core inhibited HIV-1 infection,

and provided proof-of-principal that R1-substitution of

(piperidinyl)ethyl and (pyrrolidinyl)ethyl moieties con-

nected to the lactam ring increased anti-HIV-1 activity, and

that substitutions at R3-R4-R6-R7 on Compound 2 influ-

enced antiviral activity and cell viability. The inhibitory

effect of the aristolactam derivatives on HIV-1 infection

and cell viability (tested at a concentration of 3 lmol/L)

are summarized in Table 1.

Concentration–Response of Aristolactam
Derivatives for Inhibition of HIV-1 Infection

To accurately evaluate the potency of the aristolactam

derivatives, TZM-bl cells infected with HIV-1NL4-3 were

treated with 1:2 serially diluted compounds at a starting

concentration of 25 lmol/L. The cytotoxicity of the com-

pounds was also evaluated. As a control, seliciclib had a

half-maximal inhibitory concentration (IC50) value of

2.29 lmol/L and a selectivity index (SI, the ratio of IC50 to

CC50: a concentration which reduces cell viability by 50%)

of 11.11; this value was similar to that reported in a pre-

vious study (Shin et al. 2020). As shown in Table 2, 5-(2-

pyrrolidinyl)ethyl) (Compound 1) exhibited a strong inhi-

bitory effect, with an IC50 value of 0.69 lmol/L. The IC50

values of 5-((2-piperidinyl)ethyl) (Compound 2) and 5-(2-

diethylamino)ethyl) substituents (Compound 3) were

1.03 lmol/L and 3.73 lmol/L, respectively. The CC50

values of Compound 1, Compound 2, and Compound 3

were 6.88 lmol/L, 16.91 lmol/L, and 17.15 lmol/L,

respectively, and the selectivity indices were 9.94, 16.45,

and 4.59, respectively. From these results, the 5-(2-piper-

idinyl)ethyl) substitution at R1 (Compound 2) showed the

highest SI with low cytotoxicity. The effect of substituting

side chains at R3-R4-R6-R7 on 5-(2-(piperidinyl)ethyl)-

dibenzo[cd,f]indol-4(5H)-one (Compound 2) was evalu-

ated; two derivatives substituted to R7-H (Compound 5)

and R6-R7-H (Compound 6) had IC50 values of 1.07 lmol/L

and 1.06 lmol/L, respectively, which were similar to the

IC50 value of tetra-methoxy (Compound 2); however, they

exhibited severe cytotoxicity, as indicated by CC50 values

of 4.51 lmol/L and 4.97 lmol/L, respectively, and low SIs

(4.23 and 4.70, respectively). The compound with H-sub-

stitution at positions R4-R6-R7 (Compound 7) showed the
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highest cytotoxicity, as indicated by the lowest SI (1.80).

Substitution of R7-F (Compound 8) and R7-Cl (Compound 9)

increased the antiviral effect (IC50 values of 0.55 lmol/L and

0.44 lmol/L, respectively), but decreased cell viability (CC50

values of 3.72 lmol/L and 3.64 lmol/L, respectively), and

resulted in low SIs of 6.74 and 8.31, respectively. An

H-substituent (Compound 4) at R6-R7 on 5-(2-(diethy-

lamino)ethyl) (Compound 3) increased cytotoxicity (CC50

value of 6.98 lmol/L), but its antiviral effect was not

higher than that of Compound 3. Consequently, among the

50N-substituents (R1), 5-(2-(piperidinyl)ethyl) (Compound

2) exhibited good inhibition of HIV-1 infection and the

lowest cytotoxicity. H-substitution at positions R6-R7 on

Compound 2 increased cytotoxicity, and substitution to F

and Cl at position R7 increased the anti-HIV-1 effect, but

this was accompanied by high cytotoxicity (Table 2).

These data indicate that aristolactam derivatives potently

inhibited HIV-1 infection, while cytotoxicity increased

greatly at concentrations of over 6.25 lmol/L (data not

shown).

Inhibitory Effects of Aristolactam Derivatives
on HIV-1 Replication

To determine the inhibitory effect of the aristolactam

derivatives on the overall HIV-1 life cycle, HIV-1 repli-

cation assays were performed in A3.01 T-cell lines

(Fig. 2A) and PBMCs (Fig. 2B) infected with CXCR4

tropic HIV-1NL4-3 in the presence or absence of these

compounds. 5-(2-pyrrolidinyl)ethyl (Compound 1) and

derivatives of 5-(2-piperidinyl)ethyl (Compounds 2 and

5–9) almost completely abrogated viral replication at a

concentration of 3 lmol/L, with a cell survival rate of over

50%. 5-(2-(diethylamino)ethyl) (Compound 3) and its R6-

R7-H substituted form (Compound 4) showed less inhibi-

tion of viral replication, which accorded with its reduced

effect on viral infection. As a representative compound,

Compound 1 suppressed replication of the CCR5 tropic

HIV-1AD8 strain in the MOLT4-R5 cell line and in

PBMCs; these effects were similar to the inhibitory effect

of this compound on replication of the CXCR4 tropic

HIV-1NL4-3 strain at the same concentration (Fig. 2C).

Mode of Action of Aristolactam Derivatives
on HIV-1 Inhibition

To further define the mode of action associated with the

inhibitory effects of the compounds on HIV-1 infection, a

HIV-1 reverse transcriptase (RTase) assay and an integrase

assay were performed. Initial studies used Compound 1 as

a representative compound, since it was efficacious in

inhibiting HIV-1 infection. RTase inhibitors azi-

dothymidine (AZT) and integrase inhibitors (elvitegravir;

ELG and raltegravir; RAL) inhibited the activity of RTase

and integrase, respectively, but Compound 1 did not inhibit

the activity of either enzyme (Fig. 3A, 3B).

To examine whether the aristolactam derivatives can

inhibit HIV-1 transcription induced by the viral transcrip-

tional factor Tat, a dual reporter system was employed. As

this system compares the Tat-induced activity of firefly

luciferase (F-Luc) or b-galactosidase (b-gal) with renilla

luciferase (R-Luc) activity indicating normal cellular

transcriptional activity, it can be used to assess the inhi-

bitory effect of compounds on Tat-induced HIV-1 tran-

scription. Compound 1 inhibited Tat-induced HIV-1

transcription without inhibiting R-Luc activity (Fig. 3C).

Thus, a concentration–response assay of each of the aris-

tolactam derivatives was conducted to determine their

potency at inhibiting Tat-mediated viral transcription. All

derivatives impaired HIV-1 transcriptional activity as

measured by decreases in both F-Luc and b-gal activity at

below 6.25 lmol/L, with no decrease in R-Luc activity

(Fig. 4). Notably, 5-(2-pyrrolidinyl)ethyl (Compound 1) at

a concentration of approximately 3 lmol/L completely

inhibited HIV-1 viral transcription, with an IC50 value of

1.1 lmol/L (Table 3). R1 substitution of Compound 1 to

5-(2-piperidinyl)ethyl (Compound 2) and 5-(2-diethy-

lamino)ethyl (Compound 3) resulted in IC50 values of

2.85 lmol/L and 2.58 lmol/L, respectively. Among the

derivatives of Compound 2, an R7-H derivative (Com-

pound 5) exhibited the highest inhibitory effect, with an

IC50 value of 1.36 lmol/L, and the IC50 values of the

other derivatives (Compound 6–9) were between *
1.78–3.38 lmol/L (Fig. 4 and Table 3). The inhibitory

effect of each of the derivatives on HIV-1 transcription was

generally similar to their inhibitory effect on HIV-1 inhi-

bition (Fig. 4 and Table 2). These data revealed that aris-

tolactam derivatives bearing a dibenzo[cd,f]-indol

backbone exerted an inhibitory effect on Tat-induced viral

transcription, which accounts for their inhibitory effects on

HIV-1 infection. The increase in R-Luc activity in com-

bination with a decrease in F-Luc activity might have been

due to an excess of common machinery for transcription

caused by the suppression of F-Luc expression (Shin et al.

2020).

Discussion

Currently, four classes of HIV-1 drugs have been devel-

oped, and these target the specific viral replication steps of

entry, reverse transcription, integration, and protease-

mediated viral maturation (Arts and Hazuda, 2012).

However, these antiretroviral treatments often lead to the

emergence of drug-resistant mutations and adverse effects,

as well as reservoirs of cells infected with latent HIV-1 that
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are not eliminated by current treatments (Finzi et al.

1997). Therefore, efforts are needed to develop a new class

of HIV-1 drug to control the spread of HIV/AIDS.

Many studies have been directed at screening com-

pounds derived from natural products to find novel and

potent HIV-1 agents. Several natural products (such as
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Fig. 2 Inhibitory effect on viral replication. A3.01 cells (A) and

PBMCs (B) (both 5 9 104) cultured without activation were infected

with HIV-1NL4-3 at an MOI of 0.1 for 4 h and then treated with

compounds (3 lmol/L) for 72 h. The inhibitory effect of the

compounds on viral replication was determined by measuring the

amount of p24 using an HIV-1 p24 ELISA kit. Cell viability was

determined as described in Materials and Methods. C Cells (5 9 104

of MOLT4-R5 and PBMCs) infected with HIV-1AD8 at an MOI of 0.1

for 4 h were treated with (Compound 1) (3 lmol/L) for 72 h, and the

p24 levels and cell viability were determined as shown above. Data

(A–C) are presented as a value relative to the vehicle (DMSO)-treated

controls, as the mean ± SD (n = 3). *P\0.05 and **P\ 0.01

compared with the cells treated with the vehicle.
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Fig. 3 Determination of the anti-HIV-1 mode of action of the

aristolactam derivatives. A Each compound was administered to

TZM-bl cells for 1 h prior to infection with HIV-1NL4-3 at a final

concentration of 10 lmol/L. After 16 h of infection, the cells were

harvested and the levels of the RT product were determined as

described in Materials and Methods. B An INTase assay was

performed with 10 lmol/L of the indicated compounds according to

the manufacturer’s protocol. C bl-DTR cells (1 9 104) were treated

with 3 lmol/L of the indicated compounds and then cultured in the

presence of doxycycline (50 ng/mL). After 24 h of treatment, firefly

luciferase and renilla luciferase activity was determined using the

Dual-Glo-Luciferase assay system. The data (A–C) are presented as a

value relative level to the vehicle (DMSO)-treated controls, as the

mean ± SD (n = 3). *P\ 0.05 and **P\ 0.01 compared with the

cells treated with vehicle. AZT; azidothymidine, ADV; adefovir,

ELG; elvitegravir, RAL: raltegravir, T20: a fusion inhibitor.
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calanolides (Kashman et al. 1992), betulinic acid (Kashi-

wada et al. 1996), kuwanon-L (Esposito et al. 2015), and

patentiflorin A (Zhang et al. 2017) potently inhibit viral

replication by targeting steps that are essential to the viral

life cycle, but these compounds are not yet used as clinical

medications. Accordingly, further screens are ongoing to

discover possible candidates for ART.

The naturally occurring aristolactam family is made up

of relatively simple compounds, which have druggable

potency and several distinctive biological activities (Chia

et al. 2000; Kim et al. 2004; Tsai et al. 2005; Zhang et al.

2007). Therefore, several research groups have synthesized

diverse aristolactam derivatives and conducted SAR

studies to enhance the potency of these derivatives; such

compounds might have applications against several human

diseases in which aristolactams are known to be thera-

peutically beneficial, or new biological and/or clinical

applications (Choi et al. 2009; Couture et al. 2002;

Hoarau et al. 2001; Reddy and Jeganmohan 2017; Yao and

Larock 2005).

In this study, an aristolactam derivative (Compound 1)

was found to be effective in inhibiting HIV-1 infection. A

compound (ID 262860) containing an isoindole core,

which is structurally similar to Compound 1, also inhibited

HIV-1 infection, although it was less potent and cytotoxic.

The indole feature is structurally similar to a purine ring,

which is known to play an important role in anti-HIV-1

effects, as exemplified by the cyclin-dependent kinase

(CDK) inhibitor (seliciclib) (Agbottah et al. 2005; Schang

2002), and some purine derivatives containing aryl groups

(Pang et al. 2008). Accordingly, it is thought that the

indole core of aristolactam compounds, which is similar to

that of purine-based compounds, might also provide a

template for the development of new compounds against

HIV-1 infection, as reviewed in a previous report (Xu and

Lv 2009) (Fig. 1A, 1B). In this study, an R1 substitution to

5-(2-pyrrolidinyl)ethyl (Compound 1) and 5-(2-pyrro-

lidinyl)ethyl (Compound 2) on the indole ring produced

more potent anti-HIV-1 effects than diethyl substituents

(Compounds 3 and 4) (Fig. 1 and Table 1). These data

indicate that 50N-ring-type substitution on the indole core

might increase the inhibition of HIV-1 infection, similar to

the case of seliciclib, which consists of a purine core
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Fig. 4 Concentration–response of the aristolactam derivatives. bl-

DTR cells (1 9 104) were cultured in 100 lL medium for 24 h and

then two-fold serial dilutions of each compound were added prior to

addition of doxycycline (final concentration, 50 ng/mL). After 24 h of

treatment, the activity of firefly luciferase (F-Luc, closed circle) and

renilla luciferase (R-Luc, open circle) was determined using the Dual-

Glo-Luciferase assay system. Beta-galactosidase activity (triangle)

was measured using the b-galactosidase enzyme assay system in

parallel with the luciferase assay. Seliciclib was used as the

experimental control. The data are presented as the mean ± SD

(n = 3).

Table 3 Concentration–

responses of aristolactam

derivatives on the inhibition of

Tat-induced HIV-1

transcription.

Compound IC50 (lmol/L)a

1 1.11 ± 0.02

2 2.85 ± 0.17

3 2.58 ± 0.05

4 3.40 ± 0.02

5 1.36 ± 0.01

6 2.47 ± 0.26

7 1.78 ± 0.15

8 2.25 ± 0.24

9 3.38 ± 0.05

Seliciclib 2.25 ± 0.14

aThe compounds were assessed

in bl-DTR cells using a

concentration–response test.
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connected to a benzene ring. An SAR study of the anti-

tumor effects of aristolactam derivatives reported that

compounds with methoxy substitutions on the lactam ring

tended to increase cell death (Choi et al. 2009), whereas,

in this study, methoxy substitution decreased cell death

but did not have a significant anti-HIV-1 effect (Tables 1

and 2). These data might indicate that the dibenzo ring in

aristolactam might have a greater effect on cellular toxicity

than on HIV-1 infection. The difference in cytotoxicity

resulting from methoxy substitution observed between our

study and a previous report could be attributable to the

different cell types used. R7-Cl (Compound 9) substitution

showed the lowest inhibitory effect on Tat activity, but the

greatest anti-HIV-1 effect. The difference might be due to

the fact that the compound could affect additional certain

step(s) including viral entry, reverse transcription and/or

integration, but excluding viral transcription during infec-

tion. On the other hand, seliciclib and its derivatives were

initially developed an anti-cancer agents based on their

inhibitory effect on the kinase activity of several CDKs

required for both cancer cell growth and HIV-1 transcrip-

tional elongation (Havlicek et al. 1997; Schang 2002)

(Ivanov et al. 2018; Wei et al. 1998). The purine core

connected with the ring type moiety of seliciclib and its

derivatives (Olomoucine and Purvalanols, etc.) is critical to

compete with ATP and efficiently occupy the ATP-binding

pocket of CDKs (De Azevedo et al. 1997; Schang 2002).

In the present study, aristolactam derivatives efficiently and

specifically inhibited Tat-induced viral transcription, and

several derivatives were more potent than seliciclib

(Table 2). Even though the mechanism of aristolactam

inhibition of Tat-mediated transcription has not yet been

elucidated, it is possible - based on the structural similarity

between seliciclib and aristolactam derivatives connected

with 50-ring type moiety (Fig. 1A)-that aristolactam binds

to the ATP-binding pocket of CDKs. Indeed, aristolactam

derivatives connected with 50-ring type moiety (Compound

1 and 2) have been observed to more efficiently inhibit

HIV-1 infection than 50N-diethyl substituents (Compounds

3 and 4) (Tables 1 and 2). Instead, it seems that the inhi-

bition of CDKs by aristolactam derivatives is not the sole

mode of action for their anti-HIV-1 activity because that

activity was not absolutely concordant with their Tat

inhibitory activity. As such, further study is required to

determine whether aristolactam derivatives target the

CDKs’ activity directly.

Numerous investigations focused on the anti-cancer

activity of aristolactams have shown that these compounds

kill cancerous cells lines that are derived from the cancer

cells used in our study. Although we could not reduce the

cytotoxicity of the compounds to an acceptable level, it is

conceivable that aristolactam derivatives could be devel-

oped to treat multifaceted diseases, such as HIV-infections

in patients with cancer. Moreover, the scaffold of aristo-

lactam could be modified to provide a novel class of HIV-1

drugs targeting viral transcription if the cytotoxicity of

such drugs can be reduced. This was achieved in the case

of azidothymidine, which was originally developed as an

anti-cancer agent (Mitsuya and Broder 1987).

In summary, we randomly screened a synthetic organic

compound library to identify a series of aristolactam

derivatives that inhibit HIV-1 infection. The inhibitory

effect of these compounds on HIV-1 activity was associ-

ated with the specific inhibition of Tat-mediated viral

transcription. Together, our results demonstrate that aris-

tolactams inhibit HIV-1 infection, and may provide a

strategy for the development of a new class of HIV-1 drug.
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