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Abstract
H9N2 subtype avian influenza virus (AIV) is an influenza A virus that is widely spread throughout Asia, where it

jeopardizes the poultry industry and provides genetic material for emerging human pathogens. To better understand the

epidemicity and genetics of H9 subtype AIVs, we conducted active surveillance in live poultry markets (LPMs) in Hubei

Province from 2013 to 2017. A total of 4798 samples were collected from apparent healthy poultry and environment. Real-

time RT-PCR revealed that the positivity rate of influenza A was 26.6% (1275/4798), of which the H9 subtype accounted

for 50.3% (641/1275) of the positive samples. Of the 132 H9N2 viral strains isolated, 48 representative strains were

subjected to evolutionary analysis and genotyping. Phylogenetic analysis revealed that all H9N2 viral genes had 91.1%–

100% nucleotide homology, clustered with genotype 57, and had high homology with human H9N2 viruses isolated from

2013 to 2017 in China. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that

continued to change over time. Molecular analysis demonstrated that six H9N2 isolates had additional potential glyco-

sylation sites at position 218 in the hemagglutinin protein, and all isolates had I155T and Q226L mutations. Moreover, 44

strains had A558V mutations in the PB2 protein and four had E627V mutations, along with H9N2 human infection strains

A/Beijing/1/2016 and A/Beijing/1/2017. These results emphasize that the H9N2 influenza virus in Hubei continues to

mutate and undergo mammalian adaptation changes, indicating the necessity of strengthening the surveillance of the AIV

H9N2 subtype in LPMs.
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Introduction

The influenza A virus has eight distinct gene segments that

can be divided into 18 hemagglutinin (HA) and 11 neu-

raminidase (NA) subtypes, of which H1–H16 are found in

birds and H17 and H18 are found in bats (Webster et al.

1992; Tong et al. 2013). H9N2, H5Nx, and H7N9 subtype

influenza A viruses cause the most harm to the poultry

industry; however, as H9N2 subtype avian influenza

viruses (AIVs) have low pathogenicity in poultry, their

control has not been prioritized (Li et al. 2014). The first

H9N2 influenza virus was isolated in the United States in

1966 (Homme and Easterday 1970) and appeared in Chi-

na’s Guangdong Province in 1994, where it has been

widely prevalent since 1998 (Chen et al. 1994; Liu et al.

2003). The H9N2 influenza virus not only causes sub-

stantial damage to the poultry industry by direct infection
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or stimulating infection, but also has the potential to infect

mammals, and occasionally humans, and cause a pandemic

(Peiris et al. 1999; Fusaro et al. 2011).

Influenza viruses can produce new viruses via mutation,

recombination, and reassortment. H9N2 influenza viruses

can provide some or all of their internal genes to produce

new lethal reassortants that could infect humans, such as

H5N1, H7N9, H10N8, and H5N6 (Guan et al. 1999; Chen

et al. 2014; Yang et al. 2015; Feng et al. 2016; Pu et al.

2017). Based on genetic and phylogenetic analyses, the HA

gene of H9N2 influenza viruses can be divided into Eur-

asian and American avian lineages. The Eurasian avian

lineage mainly consists of three distinct lineages:

A/chicken/Beijing/1/94-like (BJ/94-like); A/quail/Hong

Kong/G1/97-like (G1-like); and A/duck/Hong Kong/Y439/

97 (Y439-like) (Sun et al. 2010). A recent study identified

117 different genotypes from 730 H9N2 influenza viruses

in Chinese birds, mammals, and human hosts from 1994 to

2013 (Li et al. 2017). Continuous research on the genetic

evolution of H9N2 avian influenza virus is of great

significance.

Live poultry markets (LPMs) provide a convenient

location for the reorganization of influenza viruses from

different species of poultry (Liu et al. 2014). As human-

infecting AIVs have a history of exposure in LPMs,

influenza surveillance in LPMs plays a key role in public

health security. Although the H9N2 virus has been studied

in LPMs in other regions of China and short-term local

studies have been carried out in Hubei Province (Zhou

et al. 2012; Huang et al. 2015; Wu et al. 2015; Chen et al.

2016), the presence and genetic structure of H9N2 viruses

in LPMs in Hubei Province is still poorly understood. This

is the first study to perform a comprehensive genetic evo-

lution analysis of H9N2 influenza viruses in LPMs in

Hubei Province, central China. Our results revealed the

prevalence and genetic characteristics of H9N2 influenza

viruses. In addition, our findings can help assess the

potential pandemic risks of H9N2 influenza viruses.

Materials and Methods

Sample Collection

From October 2013 to December 2017, we carried out

active surveillance in LPMs in 11 districts of Hubei Pro-

vince, including: Wuhan, Huanggang, Huangshi, Ezhou,

Jingzhou, Yichang, Xiangyang, Jingmen, Xianning, Xiao-

gan, and Shiyan (Fig. 1). A total of 4798 samples were

collected from apparent healthy poultry, including 4342

swab samples (3036 chickens, 1261 ducks, 35 pigeons, 10

geese) and 456 environmental samples (Table 1). Throat

and cloaca swabs from the same bird were placed in one

preservation tube according to previously described sam-

pling methods (Deng et al. 2013). Poultry samples were

collected in duplicate: one to detect AIV RNA and the

other to inoculate chicken embryos. Each sample was

placed in phosphate-buffered saline (PBS, pH 7.4) con-

taining 10% glycerol, ampicillin (2000 U/mL), gentamycin

(2000 lg/mL), and streptomycin (2000 lg/mL). The sam-

ples were immediately cryopreserved in the laboratory and

stored at -70 �C.

Detection of AIV RNA

RNA was extracted from the collected samples using a

Thermo KingFisher Flex Purification System (Ther-

moFisher, Vantaa, Finland) with a Mag Pure Viral Nucleic

Acid KF Kit (Mag, Guangzhou, China). Influenza A, H5,

H7, and H9 subtypes were detected using TransScriptII

Probe One-Step qRT-PCR SuperMix (Transgene, Beijing,

China). Primers and probes were selected based on the

Chinese National Influenza Center (CNIC) national influ-

enza monitoring technical guide and the World Health

Organization (WHO) information for the molecular diag-

nosis of influenza virus (CNIC 2011; WHO 2013, 2014).

Samples with a cycle threshold (Ct) value of \ 35 were

considered positive.

Virus Isolation and Sequencing

To isolate the viruses, H9-subtype positive samples were

inoculated into 9-day-old specific pathogen-free chicken

embryos, and allantoic fluid was harvested as described

previously (Deng et al. 2013) and tested for HA activity.

HA-positive samples were characterized by real-time RT-

PCR (CNIC 2011; WHO 2013, 2014). Briefly, viral RNA

was extracted from allantoic fluid using a High Pure Viral

RNA kit (Roche, Mannheim, Germany), and the surface

genes and internal genes coding sequences were amplified

by RT-PCR using PrimeScriptTM One Step RT-PCR Kit

Ver. 2 (TaKaRa, Dalian, China) with specific primers

(Hoffmann et al. 2001). RT-PCR was performed in a 50 lL
reaction mix containing 5 lL of RNA, 25 lL of Prime-

Script One step Enzyme Mix, 14 lL of RNase-Free dH2O,

2 lL of 10 pmol forward primer, and 2 lL of 10 pmol

reverse primer. Amplification parameters were as follows:

initial step of 30 min at 50 �C, then 5 min at 94 �C, 40
cycles of 30 s at 94 �C, 30 s at 50 �C, and 2 min at 72 �C,
followed by 10 min extension at 72 �C. The amplified

products were sent to Shanghai Sangon Biotech for

sequencing. AIV isolation and identification were con-

ducted in Physical Containment Level 2 Plus laboratory.
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Genetic and Phylogenetic Analyses

Nucleotide sequences were edited using the SeqMan

module in DNAstar (7.0), and phylogenetic analyses were

performed using MAGE 6.0 with the neighbor-joining

algorithm and bootstrap analysis with 1000 replicates.

Multiple sequence alignments were compiled using Clustal W

(Tamura et al. 2013). Phylogenetic analyses were based on

the following protein coding nucleotide sequences: PB2,

49-2289; PB1, 25-2233; polymerase acidic (PA), 25–2151;

HA, 43-1572; nucleoprotein (NP), 46-1527; NA, 20–1408;

matrix (M), 26-1001; and nonstructural (NS), 29-859.

Potential HA glycosylation sites were predicted using

NetNGlyc1.0 (https://www.cbs.dtu.dk/services/NetNGlyc/).

The ‘‘group’’ of each segment of H9N2 influenza viruses in

the study was categorized using 95% sequence identity

cutoffs refers to previously described (Deng et al. 2013).

Genotyping was determined by the combination of

group assignments of each of eight segments (Li et al.

2014). Reference strain sequences were obtained from the

Influenza Virus Database (https://www.ncbi.nlm.nih.gov/

genomes/FLU/Database/nph-select.cgi). Nucleotide

sequences were deposited in GenBank under accession

numbers MN647131 to MN647514 (Supplementary

Table S1).

Fig. 1 Map of sampling sites in Hubei Province, China. The eleven districts where samples were collected are shown in yellow.

Table 1 Detection of influenza

A viruses by real-time RT-PCR

in samples from live poultry

markets in Hubei Province.

Samples (n) Influenza A (%) H5 (%) H7 (%) H9 (%) H5 ? H9 (%)

Chicken 3036 763 (25.1) 54 (1.9) 10 (0.3) 575 (18.9) 63 (2.1)

Duck 1261 399 (31.6) 79 (6.2) 0 43 (3.4) 61 (4.8)

Pigeon 35 2 (5.7) 0 0 2 (5.7) 0

Goose 10 0 0 0 0 0

Environment 456 111 (24.3) 16 (3.5) 7 (1.5) 21 (4.6) 34 (7.4)

Total 4798 1275 (26.6) 149 (3.1) 17 (0.4) 641 (13.4) 158 (3.3)
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Results

Prevalence of Influenza A Virus in Hubei Province

From October 2013 to December 2017, we collected 4798

swabs and environmental samples from LPMs throughout

Hubei Province (Central China) and screened the samples

for influenza A H5, H7, and H9 subtypes using real-time

RT-PCR. A total of 1275 samples were positive for influ-

enza A (26.6%), of which 641 were positive for the H9

subtype (13.4%), 149 were positive for the H5 subtype

(3.1%), 158 were positive for the H5 ? H9 subtype

(3.3%), and 17 were positive for the H7 subtype (Table 1).

Phylogenetic Analysis and Genotyping of H9N2
Subtype

After molecular identification and virus isolation, 132 H9

subtype viruses were isolated and their HA and NA genes

were sequenced. H9N2 subtype influenza viruses were the

main subtype, and there were mixed infections. Highly

homologous strains were removed based on sampling time,

location, and poultry breed, leaving 48 H9N2 influenza

viruses that underwent full-segment genetic analysis. The

reference sequences included classic H9N2 strains, three

genotype 57 strains, all full-length human H9N2 influenza

virus strains from 1999 to 2017, and other reference strains.

To better understand the genetic evolution of the H9N2

AIVs isolated from LPMs, we performed phylogenetic

analysis on all eight genes of the 48 H9N2 isolates. Genetic

evolution analysis revealed that all gene segments of the 48

H9N2 viruses belonged to the Eurasian lineage and geno-

type 57. The surface genes of all H9N2 viruses analyzed in

the study were highly homologous with the human strains

after 2013, while the HA gene shared 93.4%–99.9% iden-

tity at the nucleotide level and formed three phylogenetic

groups (Groups 1–3). Group 1 contained six isolates and

human origin strain A/Lengshuitan/11197/2013 (H9N2).

Group 2 contained seven isolates. Group 3 contained 35

isolates and five H9N2 human strains (Fig. 2A). The NA

genes shared 91.1%–100% identity at the nucleotide level

and formed five phylogenetic groups (Groups 1–5). Groups

1, 2, and 3 each contained one isolate and group 3 con-

tained the human strain A/Lengshuitan/11197/2013

(H9N2), while groups 4 and 5 contained the other five

H9N2 human strains (Fig. 2B).

The internal genes displayed respective nucleotide

homologies of 94.4%–100% for the PB2 gene, 94.8%–

99.9% for the PB1 gene, 93.2%–100% for the PA gene,

93.6%–100% for the NP gene, 95.3%–100% for the

M gene, and 94.3%–100% for the NS gene. Based on their

nucleotide identity, the PA and NP genes were divided into

two phylogenetic groups, while the PB2, PB1, M, and NS

genes were categorized into one phylogenetic group. Group

2 of the PA gene contained only one A/chicken/Hubei/

S389/2013 isolate (H9N2). The internal genes of all H9N2

viruses were clustered into genotype 57, whose represen-

tative strain is A/chicken/Zhejiang/HJ/2007 (H9N2). These

results indicated that the internal genes of the H9N2 viruses

were highly homologous with the human H9N2 strains

from 2013 to 2017 and AIVs such as H7N9, H10N8,

H5N2, H5N6, and H10N6 (Supplementary Figure S1 and

S2).

Based on the 95% genetic diversity of each segment, the

48 H9N2 viruses in this study were divided into ten

genotypes (Fig. 3A). Genotypes 1 (2013), 2 (2013), 6

(2016), and 7 (2016) each contained one isolate and were

thus deemed to be transient genotypes. Genotype 4 only

appeared in 2016. Genotype 5 (2014–2016) was the main

genotype, accounting for 43.8% of the isolated strains.

Genotypes 8 and 9 existed in 2015–2017, whereas geno-

type 10 was detected in 2015 and 2017, with a significant

change in its NP gene (Fig. 3B). These findings indicated

that the genotypes of H9N2 influenza viruses continued to

change over time.

Molecular Characterization

All H9N2 isolates possessed a ‘‘PSRSSR/GLF’’ motif at

the HA cleavage site (Fig. 4), which is a typical charac-

teristic of low pathogenicity in chickens (Guo et al. 2000;

Ge et al. 2009). The HA amino acid receptor binding sites

were S138A, I155T, H183N, A190V/T, Q226L, 227M, and

228G (H3 numbering, as used throughout the manuscript).

I155T and Q226L mutations were detected in all strains,

which favor the affinity of influenza viruses for human-type

receptors (Matrosovich et al. 2001; Wan et al. 2008). In all

viruses, HA has eight known potential glycosylation sites

(Asn-X-Ser/Thr, where X =/=P) at positions 29, 82, 141,

298, 305, 313, 492, and 551 (Wu et al. 2015; Zhu et al.

2018). Six of the H9N2 viruses in this study had an addi-

tional potential glycosylation site at position 218, which

was detected in the human H9N2 influenza viruses A/Hong

Kong/1074/1999 and A/Hong Kong/3239/2008 (Supple-

mentary Table S2A).

In NA, three amino acids (sites 63–65) were deleted at

the stalk region in all virus strains in this study, as

described previously (Huang et al. 2015; Wu et al. 2015;

Ge et al. 2018; Wang et al. 2018). However, no H274Y or

R292K substitutions were observed, indicating that isolated

viruses would be sensitive to NA inhibitors such as osel-

tamivir (Hurt et al. 2009) (Supplementary Table S2B).

In PB2, the A588V mutation, which is a new marker of

mammalian AIV adaptation, was detected in 44 of the 48

H9N2 virus strains (Xiao et al. 2016). L89V, G309D,
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R477G, and I495V mutations were also detected in PB2,

which have been shown to increase AIV virulence in mice

(Li et al. 2009). No E627K or D701N mutations were

detected in PB2; however, four viruses possessed an

E627V mutant, which was identified in human H9N2

influenza virus A/Beijing/1/2016 and A/Beijing/1/2017.

In PB1, L13P and 368V mutation were found. A515T

was found in PA. The mutations N30D and T215A in the

M1 and the P42S and V149A substitutions in NS1 were

detected in all strains, which associated with

increased virulence in mice (Fan et al. 2009; Li et al. 2006;

Jiao et al. 2008). In addition, S31N was identified in M2 in

all isolates, suggesting that these viruses were resistant to

antiviral drugs (Belshe et al. 1988). (Supplementary

Table S2B). The results indicated that the H9N2 avian

influenza virus in this study had undergone mutations

adapted to mammals (Fig. 4).

Discussion

The H9N2 virus poses a threat to public health as it can act

as a genetic donor and directly infect humans as an

emerging human influenza virus (Gu et al. 2017). In this

study, we found that the rate of avian influenza A virus

positivity in LPMs was 26.57% and H9N2 was the main

subtype, consistent with a previous report from Wuhan in

Hubei Province over the same period (Chen et al. 2016). In

addition, the positivity rate in chickens was higher than that

in waterfowl duck, and mixed infections of different

influenza viruses were observed, as reported previously

Fig. 2 Phylogenetic analysis of the surface genes of H9N2 avian

influenza viruses collected from live poultry markets in Hubei

Province between 2013 to 2017. A HA gene. B NA gene. Solid

triangles indicate strains isolated in this study. Solid circles indicate

H9N2 strains that caused human infection. Solid squares indicate

genotype 57 strains. For each node, bootstrap values C 70% are

shown. The tree was created using the neighbor-joining method and

bootstrapped with 1000 replicates using MEGA6.0.
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(Wu et al. 2015). As such, LPMs likely played a key role in

the emergence of new influenza viruses, and disinfection

should be used to stop the spread of the disease.

H9N2 influenza virus has low pathogenicity in birds and

humans; however, its gene segments can reassort with

other influenza viruses with the potential to produce new

virus epidemics that can cause greater harm. The H5N6,

H7N9, and H10N8 subtypes that infect humans possess all

the H9N2 influenza virus internal genes (Gao et al. 2013;

Qi et al. 2014; Shen et al. 2016), while the PB2 and PB1

genes of early human H5N1 virus infections are highly

homologous to those in H9N2 (Guan et al. 1999). In this

study, we found that the internal genes of the H9N2 isolates

were highly homologous with many other influenza viruses,

posing the risk of a new influenza virus epidemic. Geno-

type 57 appeared in China in 2007 and dominated from

2010 to 2013 (Pu et al. 2015; Li et al. 2017), providing a

genetic source for more than ten influenza reassortants,

including H7N9 and H10N8, and thus posing a potential

influenza pandemic concern (Pu et al. 2015). The H9N2

viral genes in this study belonged to genotype 57 and were

divided into ten genotypes based on 95% nucleotide

homology, indicating a high degree of genetic diversity.

Studies carried out over the same period in Hunan and

Jiangxi Provinces found that the isolated H9N2 viruses also

belonged to genotype 57 (Huang et al. 2015; Han et al.

2018). Recently, new H9N2 genotypes were identified

from environmental samples in China (Zou et al. 2019). In

this study, the surface genes of the H9N2 isolates displayed

great genetic diversity; however, there were only a few

changes in the internal genes and continuous changes in

genotypes. Together, these results indicate that the H9N2

AIV in Hubei continues to evolve and should be given high

priority.

HA is an AIV receptor binding and membrane fusion

glycoprotein that is the main inducer of neutralizing anti-

bodies against viral infection (Skehel and Wiley 2000). HA

receptor binding preferences play an important role in the

replication and spread of influenza viruses. For instance,

the characteristics of H9N2 viruses in southern China from

2009 to 2013 indicated that natural chicken-derived H9N2

isolates gradually gained preference for human a-2,6 sialic

acid receptors, with several variants displaying airborne

transmission in ferrets (Li et al. 2014). Previous studies

have shown that the HA I155T mutation is important for

the binding of H9N2 to mammalian receptors (Li et al.

Fig. 3 The genotypes and timeline of 48 H9N2 viruses collected in Hubei Province from 2013 to 2017. A The genotypes of 48 H9N2 viruses.

B Timeline.
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2014). In this study, all H9N2 strains had I155T mutations,

indicating that all these viruses had changes that enable

mammalian infection. The HA Q226L mutation, which has

been shown to contribute to the binding between human

receptor and the H9N2 virus (Vines et al. 1998), was

detected in all H9N2 isolates in our study. Thus, our

findings indicate that H9N2 has the potential for cross-

species transmission.

The E627K and D701N mutations in influenza virus

PB2 proteins are critical for enhancing mammalian

pathogenicity (Chen et al. 2013; Nieto et al. 2017). Pre-

vious studies have shown that H7N9 and H10N8 viruses

readily acquire E627K or D701N mutations in PB2 during

human replication (Qi et al. 2014; Nieto et al. 2017; Qi

et al. 2018), and PB2 E627K mutations have recently been

discovered in wild birds for the first time (Ge et al. 2018).

Although no E627K or D701N mutations were identified in

PB2 in this study, four of the isolates had E627V mutations

similar to those in the H9N2 influenza virus that infected

humans in 2016 and 2017. A recent study found that PB2

E627V mutations could increase H9N2 virus replication

and enhance its pathogenicity (Arai et al. 2019). Similarly,

we found that most isolates in this study had recently

acquired the mammalian adaptation mutation A588V in

PB2 protein, which can enhance polymerase activity, virus

replication, and virulence of influenza H7N9, H10N8, and

H9N2 viruses since 2013.

In conclusion, we conducted an epidemiological survey

of AIVs in LPMs in Hubei Province and performed genetic

analysis on representative H9N2 isolated strains. We

revealed that the H9N2 subtype virus is the dominant

influenza virus in LPMs and mixed infections are preva-

lent, posing a greater risk of genetic recombination to

generate new influenza viruses. Phylogenetic analysis

indicated that all H9N2 influenza viruses in this study were

divided into multiple genotypes that change over time.

Their internal genes were highly homologous with H7N9,

H10N8, H5N6, and other influenza viruses that infect

humans, thus may act as a gene donor to promote the

emergence of new influenza viruses. Multiple specific

amino acid mutations were observed in HA and PB2 pro-

teins, among which the E627V mutation in PB2 was also

identified in the H9N2 influenza strains that infected

humans in 2016 and 2017, indicating that H9N2 has the

potential for cross-species transmission. Together, our

findings demonstrate that the H9N2 subtype influenza virus

in central China continues to mutate and displays the

potential for human infection. Subsequent studies on the

biological characteristics of the isolates are required to

further assess the risk of infection. In addition, the

Fig. 4 Summary of molecular features of H9N2 isolates. Key amino acids and their change frequencies are indicated.
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surveillance of H9N2 avian influenza virus should be

strengthened to elucidate the genetic characteristics.
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