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Dear Editor,

It has been more than 1 year since China reported the first

case of African swine fever (ASF) infection in August

2018, and the epidemic situation remains severe (China

News Service 2019). According to reports from the Min-

istry of Agriculture and Rural Affairs, China has reported

160 cases of ASF, which resulted in nearly 1.2 million pigs

being killed, as of November 21, 2019 (China News Ser-

vice 2019). ASF is an acute febrile, hemorrhagic and ful-

minating infectious disease, and would reach 100% case

fatality rate to pigs (Gallardo et al. 2015). The causative

pathogen, African swine fever virus (ASFV), is a double-

stranded DNA virus with a genome of 170–193 kb

belonging to the Asfarviridae family (Galindo and Alonso

2017; Gallardo et al. 2015). A recent study has revealed

that ASFV maintains a core genome of 102 ORFs and has

168 dispensable genes (Wang et al. 2019). Thus, the

complexed genomic features of ASFV require more

attentions. By using the next generation sequencing (NGS)

and the single molecule real-time sequencing (SMRT-seq),

a couple of Chinese ASFV genomes have been uncovered

(Bao et al. 2019; Wen et al. 2019; Jia et al. 2019). Com-

pared to NGS, SMRT-seq has the advantage of long read

length and can generate sequencing data containing the

original single base modification information, which can be

identified through the state-of-art bioinformatic procedures

(Senol Cali et al. 2019; Simpson et al. 2017). DNA

methylation is a chemical modification common in animal

and plant genomes. It refers to the catalytic transfer of

methyl groups on active methyl compounds (such as

s-adenosine methionine) to other compounds under the

catalysis of DNA methyltransferase (DNMT), mainly

forming 5-methylcytosine (5-mC), 6-methyladenine (6-

mA), 5-hydroxymethylcytosine (5-hmC), etc. DNA

methylation, which triggers the epigenetic regulatory

mechanism, has been proved to play important roles in

gene expression and regulation, embryonic development,

and disease-related aspects (Gouil and Keniry 2019).

Whether ASFV genome has DNA methylation and epige-

netic regulation is to be discerned.

In a previous study, we have sequenced an endemic

strain and obtained a complete genome ASFV/pig/China/

CAS19-01/2019 (accession number: MN172368, BioSam-

ple of Genome Sequence Archive: SAMC072713) by using

Nanopore sequencing technique (Jia et al. 2019). CAS19-

01 is an ASFV genotype II strain isolated from a clinical

tissue sample of a sick pig in Zhuhai. Tissue DNA was

extracted and sequenced on Nanopore’s promethION

platform. Once 100 Gb data was generated, sequencing

was terminated and only reads with a quality score[ 7

were screened (Fig. 1A). We previously obtained 8,517

virus reads in fastq format by mapping to the ASFV/HLJ-
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18 (accession number: MK333180) genome using BWA

v0.7.15 (Wen et al. 2019; Li and Durbin 2009), and here

we used the tool fast5seek to trace the source to find their

corresponding original fast5 files. In order to screen the

potential methylated nucleotides, we applied the software

suite Tombo, which is a tool set for analyzing and visu-

alizing modified nucleotides from nanopore sequencing

data (Stoiber et al. 2017). We implemented the alternative

model of Tombo to detect the m5C and m6A modifications

in the CAS19-01 genome and output the corresponding

scores. The higher the score, the more likely the modifi-

cation will occur. The results showed that 99% of the

scores are between 0 and 0.90, and the predicted sites are

evenly distributed along the genome without regional

preference (Fig. 1B). Sites with low scores are more sus-

ceptible to bias and may be false positives, so we discarded

the outputs which scored below 0.9 and obtained 500 m5C

and 1340 m6A modifications (Fig. 1C). These potential

sites did not show significant strand specificity, but it was

unexpected that the number of m6A was much more than

m5C. Next, we examined the base composition near the

m5C and m6A modification sites of the score top2

(Fig. 1D, 1E). Tombo is a testing-based detection pipeline,

which simplifies the comparison of the raw signal level

between the sample to be tested and the alternative model

into a statistical problem, and obtains statistically signifi-

cant P value through the two-step test of Mann–Whitney

U-test and Fisher’s test to predict methylation modification

(Stoiber et al. 2017). The results showed that in the

detection of m5C, there is a significant difference in the

position 141,427 of the negative chain and the position

51,922 of the positive chain of CAS19-01 compared with

model (in black) (Fig. 1D). Similarly, in the detection of

m6A, adenine at position 99,786 on the negative chain and

position 51,302 on the positive chain are highly likely to be

modified (Fig. 1E).

To further explore the special patterns of these two types

of modification in ASFV, we extracted 100 genome

sequences surrounding unique genomic positions which

with the largest estimated fraction of modified bases, and

used MEME Version 5.1.0 (Bailey and Elkan 1994) to find

motifs (Fig. 1F). We speculated that methylation modifi-

cation may affect transcriptional regulation, so we searched

JASPAR2020 website to see if these motifs might be

potential transcription factor binding sites, and the results

did confirm our conjecture that the functions of transcrip-

tion factors highly related to these motif are mainly focus

on transcription regulation, DNA replication and differen-

tiation (Supplement Table S1). In addition, we used other

two tools, nanopolish (Simpson et al. 2017) and deepmod

(Liu et al. 2019), to detect methylation, and listed the sites

information that matched the prediction of Tombo in the

results (Supplement Table S1). The number of potential

methylation sites in coding DNA sequence (CDS) region

and non-coding region is not significantly different, so we

further investigated which viral genes the methylation sites

were distributed on, and found that m5C and m6A modi-

fications on the negative strand were concentrated on the

late genes (Fig. 1G, Supplement Table S1) (Cackett et al.

2019).

There are mixed opinions about whether there is a

methylation modification in the ASFV genome. Previous

studies on the BA71V strain showed methylation at its 50

cap (Salas et al. 1981), while a study last year showed that

there is no methylation within the genome but the possi-

bility of modification is not ruled out (Weber et al. 2018).

Studies have reported that the methylation of virus-specific

genes appears to be involved in the transition from lytic

infection to latent infection, and that cytoplasmic virus

DNA appears to be consistently methylated (Hoelzer et al.

2008). Our hypothesis is that ASFV, as a large cytoplasmic

virus, may try to strengthen its own DNA replication

through epigenetic modification after infecting host cells,

and correspondingly, the host will invoke some mecha-

nisms to prevent its proliferation, and methylation may be

one of the ways. Here in our study testing-based and

model-based methods both revealed the possible methyla-

tion modification within the genome of the endemic

genotype II ASFV strain CAS19-01. At present, it is

believed that m5C modification mainly plays a role in

inhibiting gene expression, while m6A increasingly shows

the role of activating some genes (Gokhale et al. 2020;

Hoelzer et al. 2008), and our results showed that these two

modifications exist simultaneously in the CAS19-01 gen-

ome (Fig. 1). It is speculated that may be the result of

checks and balances between the virus and the host, which

bFig. 1 Detection of DNA methylations in the genome of African

swine fever virus strain CAS19-01 by nanopore sequencing. The raw

fast5 data generated by nanopore sequencing were used to detect

electrical signals to determine the presence of modifications on the

DNA. A Correlation plot between the quality score and length of each

read generated by promethION was shown, and only reads with a

quality score[ 7 were used in this study. B The distribution of m5C

and m6A sites predicted by Tombo along the ASFV genome and the

corresponding score values. Blue represents the forward strand and

purple represents the reverse strand. C The sequencing depth and

coverage along the CAS19-01 genome were shown, and the predicted

methylation sites with Tombo score[ 0.9 were left after further

screened based on B. D, E The base composition and signal value

near the site most likely to be modified by 5-methylcytosine and

6-methyladenine predicted by Tombo are shown, respectively. FMotif

patterns of 3 nt upstream and downstream of m5C and m6A sites in

CAS19-01, respectively. G Comparison for nanopore data and

regional distribution of predicted sites from three methylation

detection tools. In terms of the intersection of predicted results,

modifications on the reverse strand often occur in the coding region of

late genes.
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is likely to be achieved by inhibiting or enhancing the

binding of transcription factors, but the specific mechanism

is still unclear. In addition, there are complex cell-types in

many different stages of infection in the infected tissue,

which may lead to a mix of multiple methylation patterns

and thus affect the accuracy of experimental results.

Therefore, in follow-up studies, not only more epidemic

strains need to be collected from multiple regions, but also

experiments at the level of single type cell-culture need to

be done to describe a more complete and accurate

methylation profile of ASFV, which is essential for

understanding virus-host interactions.

In summary, we explored the potential m5C and m6A

methylation modifications of the genotype II ASFV gen-

ome using an unsupervised learning method, providing

new insights into virus-host interactions from the epige-

netic level and also laid the foundation for the subsequent

work on epigenetics mapping of ASFV.
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