. doi: 10.1016/j.virs.2024.03.002
Citation: Ru-Yi Chen, Teng Zhao, Jing-Jing Guo, Feng Zhu, Na-Na Zhang, Xiao-Feng Li, Hai-Tao Liu, Fei Wang, Yong-Qiang Deng, Cheng-Feng Qin. The infection kinetics and transmission potential of two Guaico Culex viruses in Culex quinquefasciatus mosquitoes .VIROLOGICA SINICA, 2024, 39(2) : 228-234.  http://dx.doi.org/10.1016/j.virs.2024.03.002

两种瓜伊科库蚊病毒对致倦库蚊的感染动力学及传播潜力

  • 瓜伊库蚊病毒(GCXV)是一种新分离鉴定的从中美洲和南美洲库蚊分离获得的分节段病毒,其基因组由4到5个单股正链RNA片段组成。目前,GCXV在蚊子体内的感染动力学和传播能力尚不清楚。在本研究中,我们首先使用反向遗传学方法在C6/36细胞中拯救了分别包含4个和5个RNA片段的两种GCXVs(4S和5S)。体外生物学鉴定进一步表明,两种GCXV表现出相当的复制动力学、蛋白表达能力和病毒滴度。重要的是,将两种GCXV经口感染致倦库蚊,在感染后4-10天的身体、唾液腺、中肠和卵巢中均检测到GCXV特异的RNA。此外,两种GCXV可定植于蚊卵,导致第二个生殖腺营养周期的阳性率为15%-35%。综上所述,我们的研究结果表明,在经口感染后的第一和第二性腺营养周期的致倦库蚊卵中,均可检测到4或5个RNA片段的GCXVs。

The infection kinetics and transmission potential of two Guaico Culex viruses in Culex quinquefasciatus mosquitoes

  • Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4–10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%–35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.

  • 加载中
    1. Cai, T., Liu, R., Jiang, Y., Jia, N., Jian, X., Cheng, X., Song, F., Guo, X., Zhao, T., 2023. Vector competence evaluation of mosquitoes for Tahyna virus PJ01 strain, a new Orthobunyavirus in China. Front Microbiol 14, 1159835.

    2. Duan, W., Song, H., Wang, H., Chai, Y., Su, C., Qi, J., Shi, Y., Gao, G.F., 2017. The crystal structure of Zika virus NS5 reveals conserved drug targets. The EMBO Journal 36, 919-933.

    3. Emmerich, P., Jakupi, X., von Possel, R., Berisha, L., Halili, B., Gunther, S., Cadar, D., Ahmeti, S., Schmidt-Chanasit, J., 2018. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo. Infect Genet Evol 65, 6-11.

    4. Franz, A.W., Kantor, A.M., Passarelli, A.L., Clem, R.J., 2015. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 7, 3741-3767.

    5. Goddard, L.B., Roth, A.E., Reisen, W.K., Scott, T.W., 2003. Vertical transmission of West Nile Virus by three California Culex (Diptera:Culicidae) species. J Med Entomol 40, 743-746.

    6. Huang, Y.S., Vanlandingham, D.L., Bilyeu, A.N., Sharp, H.M., Hettenbach, S.M., Higgs, S., 2020. SARS-CoV-2 failure to infect or replicate in mosquitoes:an extreme challenge. Sci Rep 10, 11915.

    7. Jia, N., Liu, H.B., Ni, X.B., Bell-Sakyi, L., Zheng, Y.C., Song, J.L., Li, J., Jiang, B.G., Wang, Q., Sun, Y., Wei, R., Yuan, T.T., Xia, L.Y., Chu, Y.L., Wei, W., Li, L.F., Ye, J.L., Lv, Q.Y., Cui, X.M., Guan, Y., Tong, Y.G., Jiang, J.F., Lam, T.T., Cao, W.C., 2019. Emergence of human infection with Jingmen tick virus in China:A retrospective study. EBioMedicine 43, 317-324.

    8. Kauffman, E.B., Kramer, L.D., 2017. Zika Virus Mosquito Vectors:Competence, Biology, and Vector Control. J Infect Dis 216, S976-S990.

    9. Kobayashi, D., Kuwata, R., Kimura, T., Shimoda, H., Fujita, R., Faizah, A.N., Kai, I., Matsumura, R., Kuroda, Y., Watanabe, S., Kuniyoshi, S., Yamauchi, T., Watanabe, M., Higa, Y., Hayashi, T., Shinomiya, H., Maeda, K., Kasai, S., Sawabe, K., Isawa, H., 2021. Detection of Jingmenviruses in Japan with Evidence of Vertical Transmission in Ticks. Viruses 13, 2547.

    10. Kuchinsky, S.C., Marano, J., Hawks, S.A., Loessberg, E., Honaker, C.F., Siegel, P.B., Lahondere, C., LeRoith, T., Weger-Lucarelli, J., Duggal, N.K., 2022. North American House Sparrows Are Competent for Usutu Virus Transmission. mSphere 7, e0029522.

    11. Ladner, J.T., Wiley, M.R., Beitzel, B., Auguste, A.J., Dupuis, A.P., 2nd, Lindquist, M.E., Sibley, S.D., Kota, K.P., Fetterer, D., Eastwood, G., Kimmel, D., Prieto, K., Guzman, H., Aliota, M. T., Reyes, D., Brueggemann, E. E., St John, L., Hyeroba, D., Lauck, M., Friedrich, T. C., O'Connor, D.H., Gestole, M.C., Cazares, L.H., Popov, V.L., Castro-Llanos, F., Kochel, T.J., Kenny, T., White, B., Ward, M.D., Loaiza, J.R., Goldberg, T.L., Weaver, S.C., Kramer, L.D., Tesh, R.B., Palacios, G., 2016. A Multicomponent Animal Virus Isolated from Mosquitoes. Cell Host Microbe 20, 357-367.

    12. Nasar, F., Haddow, A.D., Tesh, R.B., Weaver, S.C., 2014. Eilat virus displays a narrow mosquito vector range. Parasit Vectors 7, 595.

    13. Niyas, K.P., Abraham, R., Unnikrishnan, R.N., Mathew, T., Nair, S., Manakkadan, A., Issac, A., Sreekumar, E., 2010. Molecular characterization of Chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India. Virol J. 7, 189.

    14. Nuss, A.B., Brown, M.R., Murty, U.S., Gulia-Nuss, M., 2018. Insulin receptor knockdown blocks filarial parasite development and alters egg production in the southern house mosquito, Cx. quinquefasciatus. PLoS Negl Trop Dis 12, e0006413.

    15. Pascoal, J.O., Siqueira, S.M., Maia, R.D.C., Juan Szabo, M.P., Yokosawa, J., 2019. Detection and molecular characterization of Mogiana tick virus (MGTV) in Rhipicephalus microplus collected from cattle in a savannah area, Uberlandia, Brazil. Ticks Tick Borne Dis 10, 162-165.

    16. Pauvolid-Correa, A., Solberg, O., Couto-Lima, D., Nogueira, R.M., Langevin, S., Komar, N., 2016. Novel Viruses Isolated from Mosquitoes in Pantanal, Brazil. Genome Announc 4, e01195-16

    17. Qin, X.C., Shi, M., Tian, J.H., Lin, X.D., Gao, D.Y., He, J.R., Wang, J.B., Li, C.X., Kang, Y.J., Yu, B., Zhou, D. J., Xu, J., Plyusnin, A., Holmes, E. C., Zhang, Y. Z., 2014. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc Natl Acad Sci U S A 111, 6744-6749.

    18. Ratsitorahina, M., Harisoa, J., Ratovonjato, J., Biacabe, S., Reynes, J.-M., Zeller, H., Raoelina, Y., Talarmin, A., Richard, V., Soares, J.L., 2008. Outbreak of Dengue and Chikungunya Fevers, Toamasina, Madagascar, 2006. Emerging Infectious Diseases 14, 1135-1137.

    19. Rosen, L., Lien, J.C., Shroyer, D.A., Baker, R.H., Lu, L.C., 1989. Experimental vertical transmission of Japanese encephalitis virus by Culex tritaeniorhynchus and other mosquitoes. Am J Trop Med Hyg 40, 548-556.

    20. Roundy, C.M., Azar, S.R., Rossi, S.L., Huang, J.H., Leal, G., Yun, R., Fernandez-Salas, I., Vitek, C.J., Paploski, I.A., Kitron, U., Ribeiro, G. S., Hanley, K. A., Weaver, S. C., Vasilakis, N., 2017. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission. Emerg Infect Dis 23, 625-632.

    21. Sanisuriwong, J., Yurayart, N., Thontiravong, A., Tiawsirisup, S., 2021. Vector competence of Culex tritaeniorhynchus and Cx. quinquefasciatus (Diptera:Culicidae) for duck Tembusu virus transmission. Acta Trop 214, 105785.

    22. Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3, 1101-1108.

    23. Shi, M., Lin, X.D., Vasilakis, N., Tian, J.H., Li, C.X., Chen, L.J., Eastwood, G., Diao, X.N., Chen, M.H., Chen, X., Qin, X. C., Widen, S. G., Wood, T. G., Tesh, R. B., Xu, J., Holmes, E. C., Zhang, Y. Z. 2016. Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses. J Virol 90, 659-669.

    24. Wang, Z.D., Wang, B., Wei, F., Han, S.Z., Zhang, L., Yang, Z.T., Yan, Y., Lv, X.L., Li, L., Wang, S.C., Song, M. X., Zhang, H. J., Huang, S. J., Chen, J., Huang, F. Q., Li, S., Liu, H. H., Hong, J., Jin, Y. L., Wang, W., Zhou J.Y., Liu, Q., 2019. A New Segmented Virus Associated with Human Febrile Illness in China. N Engl J Med 380, 2116-2125.

    25. Wong, H.V., Vythilingam, I., Sulaiman, W.Y., Lulla, A., Merits, A., Chan, Y.F., Sam, I.C., 2016. Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia. Am J Trop Med Hyg 94, 182-186.

    26. Wu, Z., Chen, J., Zhang, L., Zhang, Y., Liu, L., Niu, G., 2023. Molecular evidence for potential transovarial transmission of Jingmen tick virus in Haemaphysalis longicornis fed on cattle from Yunnan Province, China. J Med Virol 95, e28357.

    27. Yao, Y., Huo, T., Lin, Y.L., Nie, S., Wu, F., Hua, Y., Wu, J., Kneubehl, A.R., Vogt, M.B., Rico-Hesse, R., Song, Y., 2019. Discovery, X-ray Crystallography and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B-NS3 Protease. Journal of the American Chemical Society 141, 6832-6836.

    28. Zhang, J., Zheng, Y.C., Chu, Y.L., Cui, X.M., Wei, R., Bian, C., Liu, H.B., Yao, N.N., Jiang, R.R., Huo, Q.B., Yuan, T.T., Li, J., Zhao, L., Li, L.F., Wang, Q., Wei, W., Zhu, J.G., Chen, M.C., Gao, Y., Wang, F., Ye, J.L., Song, J.L., Jiang, J.F., Lam, T.T., Ni, X.B., Jia, N., 2023. Skin infectome of patients with a tick bite history. Front Cell Infect Microbiol 13, 1113992.

    29. Zhang, X.Y., Shu, T., Wang, X., Xu, J., Qiu, Y., Zhou, X., 2021. Guaico Culex virus NSP2 has RNA helicase and chaperoning activities. J Gen Virol 102. doi:10.1099/jgv.0.001589.

  • 加载中
  • 10.1016j.virs.2024.03.002-ESM.docx

Article Metrics

Article views(183) PDF downloads(2) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    The infection kinetics and transmission potential of two Guaico Culex viruses in Culex quinquefasciatus mosquitoes

      Corresponding author: Fei Wang, wangfei179@163.com
      Corresponding author: Yong-Qiang Deng, dengyq1977@126.com
      Corresponding author: Cheng-Feng Qin, qincf@bmi.ac.cn
    • a. College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China;
    • b. State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China;
    • c. School of Life Sciences, Southwest Forestry University, Kunming, 650224, China

    Abstract: Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4–10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%–35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.

    Reference (29) Relative (20)

    目录