Citation: Hui FENG, Kang-hong HU. Aptamers Against Viral Hepatitis: from Rational Design to Practical Application* .VIROLOGICA SINICA, 2008, 23(5) : 315-320.  http://dx.doi.org/10.1007/s12250-008-2979-y

Aptamers Against Viral Hepatitis: from Rational Design to Practical Application*

  • Corresponding author: Kang-hong HU, hukgh@wh.iov.cn
  • Received Date: 18 June 2008
    Accepted Date: 03 August 2008
    Available online: 01 October 2008

    Fund Project: Program of Chinese Academy of Sciences 0802021SA1

  • Abstract: Aptamers are short nucleic acids or peptides that strongly bind to a protein of interest and functionally inhibit a given target protein at the intracellular level. Besides high affinity and specificity, aptamers have several advantages over traditional antibodies. Hence, they have been broadly selected to develop antiviral agents for therapeutic applications against hepatitis B and C viruses (HBV, HCV). This review provides a summary of in vitro selection and characterization of aptamers against viral hepatitis, which is of practical significance in drug discovery.

  • 加载中
    1. Beck J, Nassal M. 2007. Hepatitis B virus replication. World J Gastroenterol, 13: 48-64.
        doi: 10.3748/wjg.v13.i1.48

    2. Bellecave P, Andreola M L, Ventura M, et al. 2003. Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides, 13: 455-463.
        doi: 10.1089/154545703322860771

    3. Bellecave P, Cazenave C, Rumi J, et al. 2008. Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers: mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob Agents Chemother, 52 (6): 2097-2110.
        doi: 10.1128/AAC.01227-07

    4. Biroccio A, Hamm J, Incitti I, et al. 2002. Selection of RNA aptamers that are specific and high affinity ligands of the hepatitis C virus-dependent RNA polymerase. J Virol, 76: 3688-3696.
        doi: 10.1128/JVI.76.8.3688-3696.2002

    5. Bryant K F, Cox J C, Wang H, et al. 2005. Binding of herpes simplex virus-1US11 to specific RNA sequences. Nucleic Acids Res, 33: 6090-6100.
        doi: 10.1093/nar/gki919

    6. Colas P, Cohen B, Jessen T, et al. 1996. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 380 (6574): 548-550.
        doi: 10.1038/380548a0

    7. Ellington A D, Szostak J W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature, 346: 818-828.
        doi: 10.1038/346818a0

    8. Fukuda K, Vishnuvardhan D, Sekiya S, et al. 2000. Isolation and characterization of RNA aptamers specific for the hepatitis C virus nonstructural protein 3 protease. Eur J Biochem, 267: 3685-3694.
        doi: 10.1046/j.1432-1327.2000.01400.x

    9. Gopinath S C B, Misono T, Mizuno T, et al. 2006. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits hemagglutinin-mediated membrane fusion. J Gen Virol, 87: 479-487.
        doi: 10.1099/vir.0.81508-0

    10. Gopinath S C B, Sakamaki Y, Kawasaki K, et al. 2006. An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem, 139: 837-846.
        doi: 10.1093/jb/mvj095

    11. Gopinath S C B. 2007. Antiviral aptamers. Arch Virol, 152: 2137-2157.
        doi: 10.1007/s00705-007-1014-1

    12. Hu K, Beck J, Nassal M. 2004. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of rever transcription. Nucleic Acids Res, 32: 4377-4389.
        doi: 10.1093/nar/gkh772

    13. James W. 2007. Aptamers in the virologists' toolkit. J Gen Virol, 88: 351-364.
        doi: 10.1099/vir.0.82442-0

    14. Jones L A, Clancy L E, Rawlinson W D, et al. 2006. High-affinity aptamers to subtype 3a hepatitis C virus polymerase display genotypic specificity. Antimicrob Agents Chemother, 50(9): 3019-3027.
        doi: 10.1128/AAC.01603-05

    15. Kikuchi K, Umehara T, Fukuda K, et al. 2005. A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain Ⅲ-Ⅳ-targeted aptamer inhibits translation by binding to an apical loop of domain Ⅲd. Nucl Acids Res, 33: 683-692.
        doi: 10.1093/nar/gki215

    16. Konno K, Nishikawa S, Hasegawa T, et al. 2007. Isolation of RNA aptamers specific for the HCV minus-IRES domain Ⅰ. Nucl Acids Symp Series, 51: 393-394.
        doi: 10.1093/nass/nrm197

    17. Kumar P K R, Machida K, Urvil P T, et al. 1997. Isolation of RNA aptamers specific to the NS3 protein of hepatitis C virus from a pool of completely random RNA. Virology, 237: 270-282.
        doi: 10.1006/viro.1997.8773

    18. Lee S, Kim Y S, Jo M, et al. 2007. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem Biophys Res Commun, 358 (1): 47-52.
        doi: 10.1016/j.bbrc.2007.04.057

    19. Lohmann V, Korner F, Koch J, et al. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 285: 110-113.
        doi: 10.1126/science.285.5424.110

    20. Nassal M. 2008. Hepatitis B virus: reverse transcription a different way. Virus Res, 134: 235-249.
        doi: 10.1016/j.virusres.2007.12.024

    21. Ng E W M, Shima D T, Calias P, et al. 2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 5: 123-132.
        doi: 10.1038/nrd1955

    22. Nulf C J, Corey D. 2004. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucl Acids Res, 32: 3792-3798.
        doi: 10.1093/nar/gkh706

    23. Pileur F, Andreola M, Dausse E, et al. 2003. Selective inhibitory DNA aptamers of the human RNase H1. Nucl Acids Res, 31: 5776-5788.
        doi: 10.1093/nar/gkg748

    24. Rosenberg S. 2001. Recent advances in the molecular biology of hepatitis C virus. J Mol Biol, 313: 451-464.
        doi: 10.1006/jmbi.2001.5055

    25. Schultz U, Grgacic E, Nassal M. 2004. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res, 63: 1-70.
        doi: 10.1016/S0065-3527(04)63001-6

    26. Tallet-Lopez B, Aldaz-Carroll L, Chabas S, et al. 2003. Antisense oligonucleotides targeted to the domain Ⅲd of the hepatitis C virus IRES compete with 40S ribosomal subunit binding and prevent in vitro translation. Nucleic Acids Res, 31: 734-742.
        doi: 10.1093/nar/gkg139

    27. Tomai E, Butz K, Lohrey C, et al. 2006. Peptide aptamer-mediated inhibition of target proteins by sequestration into aggresomes. J Biol Chem, 281 (30): 21345-21352.
        doi: 10.1074/jbc.M604258200

    28. Trahtenherts A, Gal-Tanamy M, Zemel R, et al. 2008. Inhibition of hepatitis C virus RNA replicons by peptide aptamers. Antiviral Res, 77 (3): 195-205.
        doi: 10.1016/j.antiviral.2007.12.013

    29. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249: 505-510.
        doi: 10.1126/science.2200121

    30. Umehara T, Fukuda K, Nishikawa F, et al. 2005. Rational design of dual-functional aptamers that inhibit the protease and helicase activities of HCV NS3. J Biochem (Tokyo), 137: 339-347.
        doi: 10.1093/jb/mvi042

    31. Urvil P T, Kakiuchi N, Zhou D M, et al. 1997. Selection of RNA aptamers that bind specifically to the NS3 protease of hepatitis C virus. Eur J Biochem, 248: 130-138.
        doi: 10.1111/ejb.1997.248.issue-1

  • 加载中

Figures(2)

Article Metrics

Article views(3407) PDF downloads(17) Cited by()

Related
Proportional views

    Aptamers Against Viral Hepatitis: from Rational Design to Practical Application*

      Corresponding author: Kang-hong HU, hukgh@wh.iov.cn
    • 1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
    • 2. Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, D-93053, Germany
    Fund Project:  Program of Chinese Academy of Sciences 0802021SA1

    Abstract: Abstract: Aptamers are short nucleic acids or peptides that strongly bind to a protein of interest and functionally inhibit a given target protein at the intracellular level. Besides high affinity and specificity, aptamers have several advantages over traditional antibodies. Hence, they have been broadly selected to develop antiviral agents for therapeutic applications against hepatitis B and C viruses (HBV, HCV). This review provides a summary of in vitro selection and characterization of aptamers against viral hepatitis, which is of practical significance in drug discovery.