Citation: Zhi-qiang Bai, Xiu-fen Lei, Lin-ding Wang, Shou-jiang Gao. Identification and Function of MicroRNAs Encoded by Herpesviruses .VIROLOGICA SINICA, 2008, 23(6) : 459-472.  http://dx.doi.org/10.1007/s12250-008-2997-9

Identification and Function of MicroRNAs Encoded by Herpesviruses

  • Corresponding author: Lin-ding Wang, wangld@wh.iov.cn
    Shou-jiang Gao, gaos@uthscsa.edu
  • Received Date: 14 August 2008
    Accepted Date: 18 September 2008
    Available online: 01 December 2008

    Fund Project: National Science Foundation of China A Type B Outstanding Abroad Young Scientist AwardNational Institutes of Health CA096512National Institutes of Health CA124332Open Research Fund Program of the State Key Laboratory of Virology of China 2007013The Knowledge Innovation Program of the Chinese Academy of Sciences Chinese Academy of Sciences 0702121YJ1National Institutes of Health CA119889National Institutes of Health DE017333

  • MicroRNAs (miRNAs) play important roles in eukaryotes, plants and some viruses. It is increasingly clear that miRNAs-encoded by viruses can affect the viral life cycle and host physiology. Viral miRNAs could repress the innate and adaptive host immunity, modulate cellular signaling pathways, and regulate the expression of cellular and viral genes. These functions facilitate viral acute and persistent infections, and have profound effects on the host cell survival and disease progression. Here, we discuss the miRNAs encoded by herpesviruses, and their regulatory roles involved in virus-host interactions.

  • 加载中
    1. Ahmed M, Lock M, Miller C G, et al. 2002. Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol, 76:717-729.
        doi: 10.1128/JVI.76.2.717-729.2002

    2. Aluigi M G, Albini A, Carlone S, et al. 1996. KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi's sarcoma. Res Virol, 147:267-275.
        doi: 10.1016/0923-2516(96)82285-0

    3. Bartel D P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116:281-297.
        doi: 10.1016/S0092-8674(04)00045-5

    4. Barth S, Pfuhl T, Mamiani A, et al. 2008. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res, 36:666-675.

    5. Bernstein E, Caudy A A, Hammond S M, et al. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409:363-366.
        doi: 10.1038/35053110

    6. Biggs PM, Milne B S. 1972. Biological properties of a number of Marek's disease virus isolates. In: Oncogenesis and Herpesviruses (Biggs P M, de The G, Payne L N. eds. ). IARC, Lyon, France, p 88-94.

    7. Bloom D C. 2004. HSV LAT and neuronal survival. Int Rev Immunol, 23:187-198.
        doi: 10.1080/08830180490265592

    8. Borchert G M, Lanier W, Davidson B L. 2006. RNA polymerase Ⅲ transcribes human microRNAs. Nat Struct Mol Biol, 13:1097-1101.
        doi: 10.1038/nsmb1167

    9. Bornstein P. 2001. Thrombospondins as matricellular modulators of cell function. J Clin Invest, 107:929-934.
        doi: 10.1172/JCI12749

    10. Buck A H, Santoyo-Lopez J, Robertson K A, et al. 2007. Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol, 81:13761-13770.
        doi: 10.1128/JVI.01290-07

    11. Burnside J, Bernberg E, Anderson A, et al. 2006. Marek's disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol, 80:8778-8786.
        doi: 10.1128/JVI.00831-06

    12. Burnside J, Ouyang M, Anderson A, et al. 2008. Deep sequencing of chicken microRNAs. BMC Genomics, 9:185.
        doi: 10.1186/1471-2164-9-185

    13. Cahir-McFarland E D, Davidson D M, Schauer S L, et al. 2000. NF-kappa B inhibition causes spontaneous apo-ptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA, 97:6055-6060.
        doi: 10.1073/pnas.100119497

    14. Cai X, Hagedorn C H, and Cullen B R. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10:1957-1966.
        doi: 10.1261/rna.7135204

    15. Cai X, Lu S, Zhang Z, et al. 2005. Kaposi's sarcoma-associated herpesvirus expresses an array of viral micro-RNAs in latently infected cells. Proc Natl Acad Sci USA, 102:5570-5575.
        doi: 10.1073/pnas.0408192102

    16. Cai X, Schafer A, Lu S, et al. 2006. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog, 2:e23.
        doi: 10.1371/journal.ppat.0020023

    17. Cesarman E, Moore P S, Rao P H, et al. 1995. In vitro establishment and characterization of two acquired immu-nodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpes-virus-like (KSHV) DNA sequences. Blood, 86:2708-2714.

    18. Chang Y, Cesarman E, Pessin M S, et al. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, 266:1865-1869.
        doi: 10.1126/science.7997879

    19. Chisholm S E, Howard K, Gomez M V, et al. 2007. Expression of ICP0 is sufficient to trigger natural killer cell recognition of herpes simplex virus-infected cells by natural cytotoxicity receptors. J Infect Dis, 195:1160-1168.
        doi: 10.1086/522475

    20. Cosman D, Mullberg J, Sutherland C L, et al. 2001. ULBPs, novel MHC class Ⅰ-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity, 14:123-133.
        doi: 10.1016/S1074-7613(01)00095-4

    21. Costinean S, Zanesi N, Pekarsky Y, et al. 2006. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA, 103:7024-7029.
        doi: 10.1073/pnas.0602266103

    22. Cui C, Griffiths A, Li G, et al. 2006. Prediction and identification of herpes simplex virus 1-encoded micro-RNAs. J Virol, 80:5499-5508.
        doi: 10.1128/JVI.00200-06

    23. Cullen B R. 2004. Transcription and processing of human microRNA precursors. Mol Cell, 16:861-865.
        doi: 10.1016/j.molcel.2004.12.002

    24. Denli A M, Tops B B, Plasterk R H, et al. 2004. Processing of primary microRNAs by the Microprocessor complex. Nature, 432:231-235.
        doi: 10.1038/nature03049

    25. Dolken L, Perot J, Cognat V, et al. 2007. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol, 81:13771-13782.
        doi: 10.1128/JVI.01313-07

    26. Dunn C, Chalupny N J, Sutherland C L, et al. 2003. Human cytomegalovirus glycoprotein UL16 causes intracel-lular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med, 197:1427-1439.
        doi: 10.1084/jem.20022059

    27. Dunn W, Trang P, Zhong Q, et al. 2005. Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol, 7:1684-1695.
        doi: 10.1111/j.1462-5822.2005.00598.x

    28. Edwards R H, Marquitz A R, Raab-Traub N. 2008. Epstein-Barr Virus BART miRNAs are Produced from a Large Intron Prior to Splicing. J Virol. 82: 9094-9106.
        doi: 10.1128/JVI.00785-08

    29. Eis P S, Tam W, Sun L, et al. 2005. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA, 102:3627-3632.
        doi: 10.1073/pnas.0500613102

    30. Eliopoulos A G, Dawson C W, Mosialos G, et al. 1996. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involve-ment of TRAF3 as a common mediator. Oncogene, 13:2243-2254.

    31. Everett R D. 2000. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays, 22:761-770.
        doi: 10.1002/1521-1878(200008)22:8<>1.0.CO;2-0

    32. Feuillard J, Schuhmacher M, Kohanna S, et al. 2000. Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood, 95:2068-2075.

    33. Fixman E D, Hayward G S, and Hayward S D. 1992. trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol, 66:5030-5039.

    34. Gaidano G, Castanos-Velez E, Biberfeld P. 1999. Lym-phoid disorders associated with HHV-8/KSHV infection: facts and contentions. Med Oncol, 16:8-12.
        doi: 10.1007/BF02787352

    35. Gandy S Z, Linnstaedt S D, Muralidhar S, et al. 2007. RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol, 81:13544-13551.
        doi: 10.1128/JVI.01521-07

    36. Gerner C S, Dolan A, McGeoch D J. 2004. Phylogenetic relationships in the Lymphocryptovirus genus of the Gammaherpesvirinae. Virus Res, 99:187-192.
        doi: 10.1016/j.virusres.2003.10.011

    37. Gonzalez S, Groh V, Spies T. 2006. Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol, 298:121-138.

    38. Gottwein E, Mukherjee N, Sachse C, et al. 2007. A viral microRNA functions as an orthologue of cellular miR-155. Nature, 450:1096-1099.
        doi: 10.1038/nature05992

    39. Gregory R I, Yan K P, Amuthan G, et al. 2004. The Microprocessor complex mediates the genesis of micro-RNAs. Nature, 432:235-240.
        doi: 10.1038/nature03120

    40. Grey F, Antoniewicz A, Allen E, et al. 2005. Identification and characterization of human cytomega-lovirus-encoded microRNAs. J Virol, 79:12095-12099.
        doi: 10.1128/JVI.79.18.12095-12099.2005

    41. Grey F, Meyers H, White E A, et al. 2007. A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog, 3:e163.
        doi: 10.1371/journal.ppat.0030163

    42. Griffiths-Jones S, Saini H K, van Dongen S, et al. 2008. miRBase: tools for microRNA genomics. Nucleic Acids Res, 36:D154-158.
        doi: 10.1093/nar/gkn221

    43. Grishok A, Pasquinelli A E, Conte D, et al. 2001. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 106:23-34.
        doi: 10.1016/S0092-8674(01)00431-7

    44. Grundhoff A, Sullivan C S, Ganem D. 2006. A com-bined computational and microarray-based approach identifies novel microRNAs encoded by human gammaherpesviruses. RNA, 12:733-750.
        doi: 10.1261/rna.2326106

    45. Gupta A, Gartner J J, Sethupathy P, et al. 2006. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature, 442:82-85.

    46. Hafner M, Landgraf P, Ludwig J, et al. 2008. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44:3-12.
        doi: 10.1016/j.ymeth.2007.09.009

    47. Hammond S M, Bernstein E, Beach D, et al. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404:293-296.
        doi: 10.1038/35005107

    48. Han J, Lee Y, Yeom K H, et al. 2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 18:3016-3027.
        doi: 10.1101/gad.1262504

    49. Henderson G, Peng W, Jin L, et al. 2002. Regulation of caspase 8-and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript. J Neuro-virol, 8 Suppl 2:103-111.

    50. Hensbergen P J, Wijnands P G, Schreurs M W, et al. 2005. The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother, 28:343-351.
        doi: 10.1097/01.cji.0000165355.26795.27

    51. Hiscott J, Kwon H, Genin P. 2001. Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest, 107:143-151.
        doi: 10.1172/JCI11918

    52. Hutvagner G. 2005. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett, 579:5850-5857.
        doi: 10.1016/j.febslet.2005.08.071

    53. Hutvagner G, McLachlan J, Pasquinelli A E, et al. 2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293:834-838.
        doi: 10.1126/science.1062961

    54. Hutvagner G, Zamore P D. 2002. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297:2056-2060.
        doi: 10.1126/science.1073827

    55. Izumi K M, Kieff E D. 1997. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA, 94:12592-12597.
        doi: 10.1073/pnas.94.23.12592

    56. Khvorova A, Reynolds A, Jayasena S D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell, 115:209-216.
        doi: 10.1016/S0092-8674(03)00801-8

    57. Kim do N, Chae H S, Oh S T, et al. 2007. Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol, 81:1033-1036.
        doi: 10.1128/JVI.02271-06

    58. Landthaler M, Yalcin A, Tuschl T. 2004. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol, 14:2162-2167.
        doi: 10.1016/j.cub.2004.11.001

    59. Lee Y, Ahn C, Han J, et al. 2003. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature, 425:415-419.
        doi: 10.1038/nature01957

    60. Lee Y, Jeon K, Lee J T, et al. 2002. MicroRNA maturation: stepwise processing and subcellular locali-zation. EMBO J, 21:4663-4670.
        doi: 10.1093/emboj/cdf476

    61. Lee Y, Kim M, Han J, et al. 2004. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J, 23:4051-4060.
        doi: 10.1038/sj.emboj.7600385

    62. Lo A K, To K F, Lo K W, et al. 2007. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA, 104:16164-16169.
        doi: 10.1073/pnas.0702896104

    63. Lund E, Guttinger S, Calado A, et al. 2004. Nuclear export of microRNA precursors. Science, 303:95-98.
        doi: 10.1126/science.1090599

    64. Mocarski E S, Jr S T, Pass R F. 2007. Cytomegalo-viruses. In: Fields Virology (Knipe D M. ed. ), Kluwer/Lippincott Williams & Wilkins: Philadelphia, USA, p 2701-2772.

    65. Molnar A, Schwach F, Studholme D J, et al. 2007. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 447:1126-1129.
        doi: 10.1038/nature05903

    66. Mourelatos Z, Dostie J, Paushkin S, et al. 2002. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 16:720-728.
        doi: 10.1101/gad.974702

    67. Murphy E, Vanicek J, Robins H, et al. 2008. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA, 105:5453-5458.
        doi: 10.1073/pnas.0711910105

    68. Navarro A, Gaya A, Martinez A, et al. 2008. MicroRNA expression profiling in classic Hodgkin lymphoma. Blood, 111:2825-2832.
        doi: 10.1182/blood-2007-06-096784

    69. O'Connor C M, Kedes D H. 2007. Rhesus monkey rhadinovirus: a model for the study of KSHV. Curr Top Microbiol Immunol, 312:43-69.

    70. Patterson C E, Shenk T. 1999. Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J Virol, 73:7126-7131.

    71. Peckham C S. 1991. Cytomegalovirus infection: con-genital and neonatal disease. Scand J Infect Dis Suppl, 80:82-87.

    72. Perng G C, Jones C, Ciacci-Zanella J, et al. 2000. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science, 287:1500-1503.
        doi: 10.1126/science.287.5457.1500

    73. Pfeffer S, Sewer A, Lagos-Quintana M, et al. 2005. Identification of microRNAs of the herpesvirus family. Nat Methods, 2:269-276.
        doi: 10.1038/nmeth746

    74. Pfeffer S, Zavolan M, Grasser F A, et al. 2004. Identifi-cation of virus-encoded microRNAs. Science, 304:734-736.
        doi: 10.1126/science.1096781

    75. Raulet D H. 2003. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol, 3:781-790.
        doi: 10.1038/nri1199

    76. Rickinson A B, Kieff E. 2001. Epstein-Barr virus. In: Fields Virology (Knipe D M, Howley P M, Griffin D E, et al. eds. ), Lippincott, Williams & Wilkins: Philadelphia, p2575-2627.

    77. Roizman B, Pellett P E. 2001. The family Herpesviridae: a brief introduction, In: Fields Virology (Knipe D M, Howley P M, Griffin D E, et al. eds. ), 4th ed. Lippincott Williams & Wilkins: Philadelphia, p23 81-2397.

    78. Samols M A, Hu J, Skalsky R L, et al. 2005. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpes-virus. J Virol, 79:9301-9305.
        doi: 10.1128/JVI.79.14.9301-9305.2005

    79. Samols M A, Skalsky R L, Maldonado A M, et al. 2007. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog, 3:e65.
        doi: 10.1371/journal.ppat.0030065

    80. Sawtell N M, and Thompson R L. 1992. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol, 66:2157-2169.

    81. Schafer A, Cai X, Bilello J P, et al. 2007. Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology, 364:21-27.
        doi: 10.1016/j.virol.2007.03.029

    82. Schwarz D S, Hutvagner G, Du T, et al. 2003. Asym-metry in the assembly of the RNAi enzyme complex. Cell, 115:199-208.
        doi: 10.1016/S0092-8674(03)00759-1

    83. Skalsky R L, Samols M A, Plaisance K B, et al. 2007. Kaposi's sarcoma-associated herpesvirus encodes an ortho-log of miR-155. J Virol, 81:12836-12845.
        doi: 10.1128/JVI.01804-07

    84. Speck S H, Virgin H W. 1999. Host and viral genetics of chronic infection: a mouse model of gammaherpesvirus pathogenesis. Curr Opin Microbiol, 2:403-409.
        doi: 10.1016/S1369-5274(99)80071-X

    85. Staras S A, Dollard S C, Radford K W, et al. 2006. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin Infect Dis, 43:1143-1151.
        doi: 10.1086/508173

    86. Stevens J G, Wagner E K, Devi-Rao G B, et al. 1987. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science, 235:1056-1059.
        doi: 10.1126/science.2434993

    87. Tang S, Bertke A S, Patel A, et al. 2008. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA, 105: 10931-10936.
        doi: 10.1073/pnas.0801845105

    88. Taraboletti G, Benelli R, Borsotti P, et al. 1999. Thrombospondin-1 inhibits Kaposi's sarcoma (KS) cell and HIV-1 Tat-induced angiogenesis and is poorly expressed in KS lesions. J Pathol, 188:76-81.
        doi: 10.1002/(ISSN)1096-9896

    89. Umbach J L, Kramer M F, Jurak I, et al. 2008. Micro-RNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature, 454:780-783.

    90. Vancikova Z, Dvorak P. 2001. Cytomegalovirus infection in immunocompetent and immunocompromised individuals --a review. Curr Drug Targets Immune Endocr Metabol Disord, 1:179-187.
        doi: 10.2174/1568005310101020179

    91. Whitley R J. 2001. Herpes simplex viruses. In: Fields virology (Knipe D M, Griffin D E, Lamb R A, et al. ed. ), 4th ed, Lippincott Williams & Wilkins: Philadelphia, USA, p2461-2509.

    92. Wilkinson G W, Tomasec P, Stanton R J, et al. 2008. Modulation of natural killer cells by human cytomegalo-virus. J Clin Virol, 41:206-212.
        doi: 10.1016/j.jcv.2007.10.027

    93. Xia T, O'Hara A, Araujo I, et al. 2008. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res, 68:1436-1442.
        doi: 10.1158/0008-5472.CAN-07-5126

    94. Xu H, Yao Y, Zhao Y, et al. 2008. Analysis of the expres-sion profiles of Marek's disease virus-encoded microRNAs by real-time quantitative PCR. J Virol Methods, 149:201-208.
        doi: 10.1016/j.jviromet.2008.02.005

    95. Yang X, Chu Y, Wang Y, et al. 2006. Vaccination with IFN-inducible T cell alpha chemoattractant (ITAC) gene-modified tumor cell attenuates disseminated metastases of circulating tumor cells. Vaccine, 24:2966-2974.
        doi: 10.1016/j.vaccine.2005.12.004

    96. Yao Y, Zhao Y, Xu H, et al. 2007. Marek's disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J Virol, 81:7164-7170.
        doi: 10.1128/JVI.00112-07

    97. Yao Y, Zhao Y, Xu H, et al. 2008. MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol, 82:4007-4015.
        doi: 10.1128/JVI.02659-07

    98. Yi R, Qin Y, Macara I G, et al. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17:3011-3016.
        doi: 10.1101/gad.1158803

    99. Zeng Y, Yi R, Cullen B R. 2003. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA, 100:9779-9784.
        doi: 10.1073/pnas.1630797100

    100. Zhao T, Li G, Mi S, et al. 2007. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 21:1190-1203.
        doi: 10.1101/gad.1543507

  • 加载中

Article Metrics

Article views(4419) PDF downloads(11) Cited by()

Related
Proportional views

    Identification and Function of MicroRNAs Encoded by Herpesviruses

      Corresponding author: Lin-ding Wang, wangld@wh.iov.cn
      Corresponding author: Shou-jiang Gao, gaos@uthscsa.edu
    • 1. Tumor Virology Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
    • 2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
    • 3. Tumor Virology Program, Greehey Children's Cancer Research Institute and Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
    Fund Project:  National Science Foundation of China A Type B Outstanding Abroad Young Scientist AwardNational Institutes of Health CA096512National Institutes of Health CA124332Open Research Fund Program of the State Key Laboratory of Virology of China 2007013The Knowledge Innovation Program of the Chinese Academy of Sciences Chinese Academy of Sciences 0702121YJ1National Institutes of Health CA119889National Institutes of Health DE017333

    Abstract: MicroRNAs (miRNAs) play important roles in eukaryotes, plants and some viruses. It is increasingly clear that miRNAs-encoded by viruses can affect the viral life cycle and host physiology. Viral miRNAs could repress the innate and adaptive host immunity, modulate cellular signaling pathways, and regulate the expression of cellular and viral genes. These functions facilitate viral acute and persistent infections, and have profound effects on the host cell survival and disease progression. Here, we discuss the miRNAs encoded by herpesviruses, and their regulatory roles involved in virus-host interactions.