Citation: Hamidreza Attaran, Hassan Nili, Majid Tebianian. Immunogenicity and protective efficacy of recombinant M2e. Hsp70c (Hsp70359-610) fusion protein against influenza virus infection in mice .VIROLOGICA SINICA, 2014, 29(4) : 218-227.  http://dx.doi.org/10.1007/s12250-014-3428-8

Immunogenicity and protective efficacy of recombinant M2e. Hsp70c (Hsp70359-610) fusion protein against influenza virus infection in mice

cstr: 32224.14.s12250-014-3428-8
  • Corresponding author: Hamidreza Attaran, hamidreza_attaran@yahoo.com
  • Received Date: 28 April 2014
    Accepted Date: 05 August 2014
    Published Date: 18 August 2014
    Available online: 01 August 2014
  • New strategies in vaccine development are urgently needed to combat emerging influenza viruses and to reduce the risk of pandemic disease surfacing. Being conserved, the M2e protein, is a potential candidate for universal vaccine development against influenza A viruses. Mycobacterium tuberculosis Hsp70 (mHsp70) is known to cultivate the function of immunogenic antigenpresenting cells, stimulate a strong cytotoxic T lymphocyte (CTL) response, and stop the induction of tolerance. Thus, in this study, a recombinant protein from the extracellular domain of influenza A virus matrix protein 2 (M2e), was fused to the C-terminus of Mycobacterium tuberculosis Hsp70 (Hsp70c), to generate a vaccine candidate. Humoral immune responses, IFN-γ-producing lymphocyte, and strong CTL activity were all induced to confirm the immunogenicity of M2e.Hsp70c (Hsp70359-610). And challenge tests showed protection against H1N1 and H9N2 strains in vaccinated groups. Finally these results demonstrates M2e.Hsp70c fusion protein can be a candidate for a universal influenza A vaccine.

  • 加载中
    1. Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A, Shang H, Khan M I, Burkhard P. 2012. A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection. Influenza Res Treat, 2011:126794.doi: 10.1155/2011/126794. Epub 2012 Jan 12.

    2. Bessa J, Schmitz N, Hinton H J, Schwarz K, Jegerlehner A, Bachmann M F. 2008. Efficient induction of mucosal and systemicimmune responses by virus-like particles administered intranasally: implications for vaccine design. Eur J Immunol, 38:114-126.
        doi: 10.1002/eji.200636959

    3. Bijker M S, van den Eeden S J, Franken K L, Melief C J, OffringaR, van der Burg S H. 2007. CD8+ CTL priming by exact peptideepitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol, 179: 5033-5040.
        doi: 10.4049/jimmunol.179.8.5033

    4. Black R A, Rota P A, Gorodkova N, Klenk H D, Kendal A P. 1993.Antibody response to the M2 protein of influenza A virus expressed in insect cells. J Gen Virol, 74 (Pt 1): 143-146.

    5. Bolhassani A, Rafati S. 2008. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines, 7:1185-1199.
        doi: 10.1586/14760584.7.8.1185

    6. Carrat F, Vergu E, Ferguson N M, Lemaitre M, Cauchemez S, Leach S, Valleron A J. 2008. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. AmJ Epidemiol, 167: 775-785.
        doi: 10.1586/14760584.7.8.1185

    7. Chen C H, Wang T L, Hung C F, Yang Y, Young R A, Pardoll DM, Wu T C. 2000. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res, 60:1035-1042.

    8. Cox N J, Subbarao K. 2000. Global epidemiology of influenza:past and present. Annu Rev Med, 51: 407-421.
        doi: 10.1146/annurev.med.51.1.407

    9. De Filette M, Min Jou W, Birkett A, Lyons K, Schultz B, TonkyroA, Resch S, Fiers W. 2005. Universal influenza A vaccine: optimizationof M2-based constructs. Virology, 337: 149-161.
        doi: 10.1016/j.virol.2005.04.004

    10. De Filette M, Martens W, Smet A, Schotsaert M, Birkett A, Londono-Arcila P, Fiers W, Saelens X. 2008. Universal influenzaA M2e-HBc vaccine protects against disease even in the presence of pre-existing anti-HBc antibodies. Vaccine, 26:6503-6507.
        doi: 10.1016/j.vaccine.2008.09.038

    11. De Filette M, Martens W, Roose K, Deroo T, Vervalle F, BentahirM, Vandekerckhove J, Fiers W, Saelens X. 2008. An influenza A vaccine based on tetrameric ectodomain of matrix protein 2. JBiol Chem, 283: 11382-11387.
        doi: 10.1074/jbc.M800650200

    12. Ebrahimi S M, Tebianian M. 2010. Heterologous expression, purification and characterization of the influenza A virus M2e gene fused to Mycobacterium tuberculosis HSP70 (359-610) in prokaryotic system as a fusion protein. Mol Biol Rep, 37:2877-2883.
        doi: 10.1007/s11033-009-9846-2

    13. Ebrahimi S M, Tebianian M. 2011. Influenza A viruses: why focusingon M2e-based universal vaccines. Virus Genes, 42: 1-8.
        doi: 10.1007/s11262-010-0547-7

    14. Ebrahimi S M, Dabaghian M, Tebianian M, Jazi M H. 2012. In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran. Virology, 430(1):63-72.
        doi: 10.1016/j.virol.2012.04.015

    15. Ebrahimi S M, Tebianian M, Toghyani H, Memarnejadian A, Attaran H R. 2010. Cloning, expression and purification of the influenza A (H9N2) virus M2e antigen and truncated Mycobacterium tuberculosis HSP70 as a fusion protein in Pichia pastoris. Protein Expr Purif, 70: 7-12.
        doi: 10.1016/j.pep.2009.11.001

    16. Ernst W A, Kim H J, Tumpey T M, Jansen A D, Tai W, Cramer D V, Adler-Moore J P, Fujii G. 2006. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine, 24: 5158-5168.
        doi: 10.1016/j.vaccine.2006.04.008

    17. Fan J, Liang X, Horton M S, Perry H C, Citron M P, HeideckerG J, Fu T M, Joyce J, Przysiecki C T, Keller P M, Garsky V M, Ionescu R, Rippeon Y, Shi L, Chastain M A, Condra J H, DaviesM E, Liao J, Emini E A, Shiver J W. 2004. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine, 22: 2993-3003.
        doi: 10.1016/j.vaccine.2004.02.021

    18. Fiers W, Neirynck S, Deroo T, Saelens X, Jou W M. 2001. Soluble recombinant influenza vaccines. Philos Trans R Soc Lond B Biol Sci, 356: 1961-1963.
        doi: 10.1098/rstb.2001.0980

    19. Fiers W, De Filette M, Birkett A, Neirynck S, Min Jou W. 2004. A "universal" human influenza A vaccine. Virus Res, 103: 173-176.
        doi: 10.1016/j.virusres.2004.02.030

    20. Frace A M, Klimov A I, Rowe T, Black R A, Katz J M. 1999.Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine, 17: 2237-2244.
        doi: 10.1016/S0264-410X(99)00005-5

    21. Fu T M, Grimm K M, Citron M P, Freed D C, Fan J, Keller P M, Shiver J W, Liang X, Joyce J G. 2009. Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinantvirus like particle or conjugate vaccines in mice and monkeys. Vaccine, 27: 1440-1447.
        doi: 10.1016/j.vaccine.2008.12.034

    22. Grandea A G, 3rd, Olsen O A, Cox T C, Renshaw M, HammondP W, Chan-Hui P Y, Mitcham J L, Cieplak W, Stewart SM, Grantham M L, Pekosz A, Kiso M, Shinya K, Hatta M, Kawaoka Y, Moyle M. 2010. Human antibodies reveal a protectiveepitope that is highly conserved among human and nonhuman influenza A viruses. Proc Natl Acad Sci U S A, 107:12658-12663.
        doi: 10.1073/pnas.0911806107

    23. Haga T, Horimoto T. 2010. Animal Models to Study Influenza Virus Pathogenesis and Control The Open Antimicrobial Agents Journal, 2: 15-21.

    24. Holsinger L J, Lamb R A. 1991. Influenza virus M2 integral membraneprotein is a homotetramer stabilized by formation of disulfide bonds. Virology, 183: 32-43.
        doi: 10.1016/0042-6822(91)90115-R

    25. Huleatt J W, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L, Evans R K, Umlauf S, TusseyL, Powell T J. 2008. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine, 26: 201-214.
        doi: 10.1016/j.vaccine.2007.10.062

    26. Ionescu R M, Przysiecki C T, Liang X, Garsky V M, Fan J, WangB, Troutman R, Rippeon Y, Flanagan E, Shiver J, Shi L. 2006.Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J Pharm Sci, 95: 70-79.
        doi: 10.1002/jps.20493

    27. Jazi M H, Dabaghian M, Tebianian M, Gharagozlou M J, In vivo electroporation enhances immunogenicity and protection against influenza A virus challenge of an M2e-HSP70c DNA vaccine. Virus Res, 167(2):219-25.
        doi: 10.1016/j.virusres.2012.05.002

    28. Kutzler M A, Weiner D B. 2008. DNA vaccines: ready for prime time? Nat Rev Genet, 9: 776-788.
        doi: 10.1038/nrg2432

    29. Lamb R A, Zebedee S L, Richardson C D. 1985. Influenza virus M2 protein is an integral membrane protein expressed on theinfected-cell surface. Cell, 40: 627-633.
        doi: 10.1016/0092-8674(85)90211-9

    30. Lau L L, Cowling B J, Fang V J, Chan K H, Lau E H, Lipsitch M, Cheng C K, Houck P M, Uyeki T M, Peiris J S, Leung G M.2010. Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis, 201: 1509-1516.
        doi: 10.1086/651176

    31. Li X, Yang X, Li L, Liu H, Liu J. 2006. A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine. Vaccine, 24: 3321-3331.
        doi: 10.1016/j.vaccine.2006.01.012

    32. Liu W, Li H, Chen Y H. 2003. N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol Med Microbiol, 35: 141-146.
        doi: 10.1016/S0928-8244(03)00009-9

    33. Liu W, Zou P, Ding J, Lu Y, Chen Y H. 2005. Sequence comparison between the extracellular domain of M2 protein human and avian influenza A virus provides new information for bivalent influenza vaccine design. Microbes Infect, 7: 171-177.
        doi: 10.1016/j.micinf.2004.10.006

    34. Liu W, Peng Z, Liu Z, Lu Y, Ding J, Chen Y H. 2004. High epitope density in a single recombinant protein molecule of the extracellulardomain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine, 23: 366-371.
        doi: 10.1016/j.vaccine.2004.05.028

    35. Lu X, Tumpey T M, Morken T, Zaki S R, Cox N J, Katz J M.1999. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol, 73: 5903-5911.

    36. Macken C, Lu H, Goodman J, Boykin L. 2001. The value of a database in surveillance and vaccine selection. International Congress Series, 1219: 103-106.
        doi: 10.1016/S0531-5131(01)00330-2

    37. Mirzaei N, Mokhtari Azad T, Nategh R, Soleimanjahi H, Amirmozafari N. 2014. Construction of recombinant bacmid containing m2e-ctxb and producing the fusion protein in insect cell lines. Iran Red Crescent Med J, 16(2):e13176. doi: 10.5812/ircmj.13176.Epub 2014 Feb 7.

    38. Mozdzanowska K, Furchner M, Zharikova D, Feng J, GerhardW. 2005. Roles of CD4+ T-cell-independent and-dependentantibody responses in the control of influenza virus infection:evidence for noncognate CD4+ T-cell activities that enhance thetherapeutic activity of antiviral antibodies. J Virol, 79: 5943-5951.
        doi: 10.1128/JVI.79.10.5943-5951.2005

    39. Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L, Jr., Gerhard W. 2003. Induction of influenza type A virus-specificresistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine, 21: 2616-2626.
        doi: 10.1016/S0264-410X(03)00040-9

    40. Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou W M, FiersW. 1999. A universal influenza A vaccine based on the extracellulardomain of the M2 protein. Nat Med, 5: 1157-1163.
        doi: 10.1038/13484

    41. Pinto L H, Holsinger L J, Lamb R A. 1992. Influenza virus M2 protein has ion channel activit. Cell, 69: 517-528.
        doi: 10.1016/0092-8674(92)90452-I

    42. Qazi K R, Wikman M, Vasconcelos N M, Berzins K, Stahl S, Fernandez C. 2005. Enhancement of DNA vaccine potency by linkage of Plasmodium falciparum malarial antigen gene fused with a fragment of HSP70 gene. Vaccine, 23: 1114-1125.
        doi: 10.1016/j.vaccine.2004.08.033

    43. Reed L J, Muench H A. 1983. Simple method for estimating fifty per cent endpoints. Am. J. Epidemiol., 27: 493-497

    44. Reid A H, Fanning T G, Janczewski T A, McCall S, Taubenberger J K. 2002. Characterization of the 1918 "Spanish" influenza virusmatrix gene segment. J Virol, 76: 10717-10723.

    45. Rimmelzwaan G F, Baars M, Claas E C, Osterhaus A D. 1998.Comparison of RNA hybridization, hemagglutination assay, titration of infectious virus and immunofluorescence as methodsfor monitoring influenza virus replication in vitro. J VirolMethods, 74: 57-66.

    46. Sealy R, Surman S, Hurwitz J L, Coleclough C. 2003. Antibody response to influenza infection of mice: different patterns for glycoproteinand nucleocapsid antigens. Immunology, 108: 431-439.
        doi: 10.1046/j.1365-2567.2003.01615.x

    47. Segal B H, Wang X Y, Dennis C G, Youn R, Repasky E A, ManjiliM H, Subjeck J R. 2006. Heat shock proteins as vaccine adjuvantsin infections and cancer. Drug Discov Today, 11: 534-540.
        doi: 10.1016/j.drudis.2006.04.016

    48. Seo S H, Hoffmann E, Webster R G. 2002. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med, 8:950-954.
        doi: 10.1038/nm757

    49. Swinkels W J, Hoeboer J, Sikkema R, Vervelde L, Koets A D.2013. Vaccination induced antibodies to recombinant avian influenza A virus M2 protein or synthetic M2e peptide do not bind to the M2 protein on the virus or virus infected cells. Virol J, 10:206.
        doi: 10.1186/1743-422X-10-206

    50. Tompkins S M, Zhao Z S, Lo C Y, Misplon J A, Liu T, Ye Z, Hogan R J, Wu Z, Benton K A, Tumpey T M, Epstein S L. 2007.Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerg Infect Dis, 13: 426-435.
        doi: 10.3201/eid1303.061125

    51. Wang S, Zhang C, Zhang L, Li J, Huang Z, Lu S. 2008. The relative immunogenicity of DNA vaccines delivered by the intramuscularneedle injection, electroporation and gene gun methods. Vaccine, 26: 2100-2110.
        doi: 10.1016/j.vaccine.2008.02.033

    52. WHO. 2002. Draft WHO guidelines on the use of vaccines and antivirals during influenza pandemics. Wkly Epidemiol Rec, 77:394-404.

    53. Zhao G, Lin Y, Du L, Guan J, Sun S, Sui H, Kou Z, Chan C C, Guo Y, Jiang S, Zheng B J, Zhou Y. 2010. An M2e-based multipleantigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virol J, 7: 9.
        doi: 10.1186/1743-422X-7-9

  • 加载中

Figures(4) / Tables(1)

Article Metrics

Article views(6571) PDF downloads(16) Cited by()

Related
Proportional views

    Immunogenicity and protective efficacy of recombinant M2e. Hsp70c (Hsp70359-610) fusion protein against influenza virus infection in mice

      Corresponding author: Hamidreza Attaran, hamidreza_attaran@yahoo.com
    • 1. Avian Diseases Research Center, Faculty of Veterinary Medicine, University of Shiraz, Shiraz 71345-1731, Iran
    • 2. Department of Clinical Studies, School of Veterinary Medicine, Shahrekord University, Shahrekord 88186/34141, Iran
    • 3. Department of Biotechnology and Immunology, Razi Vaccine and Serum Research Institute (RVSRI), Karaj 31975/148, Tehran, Iran

    Abstract: New strategies in vaccine development are urgently needed to combat emerging influenza viruses and to reduce the risk of pandemic disease surfacing. Being conserved, the M2e protein, is a potential candidate for universal vaccine development against influenza A viruses. Mycobacterium tuberculosis Hsp70 (mHsp70) is known to cultivate the function of immunogenic antigenpresenting cells, stimulate a strong cytotoxic T lymphocyte (CTL) response, and stop the induction of tolerance. Thus, in this study, a recombinant protein from the extracellular domain of influenza A virus matrix protein 2 (M2e), was fused to the C-terminus of Mycobacterium tuberculosis Hsp70 (Hsp70c), to generate a vaccine candidate. Humoral immune responses, IFN-γ-producing lymphocyte, and strong CTL activity were all induced to confirm the immunogenicity of M2e.Hsp70c (Hsp70359-610). And challenge tests showed protection against H1N1 and H9N2 strains in vaccinated groups. Finally these results demonstrates M2e.Hsp70c fusion protein can be a candidate for a universal influenza A vaccine.