Citation: Zhenyuan Wang, Chunjun Qin, Jing Hu, Xiaoqiang Guo, Jian Yin. Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines .VIROLOGICA SINICA, 2016, 31(2) : 110-117.  http://dx.doi.org/10.1007/s12250-015-3691-3

Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines

  • Corresponding author: Jian Yin, jianyin@jiangnan.edu.cn, ORCID: 0000-0002-2284-1666
  • Received Date: 11 December 2015
    Accepted Date: 02 March 2016
    Published Date: 17 March 2016
    Available online: 01 April 2016
  • An effective vaccine for human immunodeficiency virus (HIV) is urgently needed to prevent HIV infection and progression to acquired immune deficiency syndrome (AIDS). As glycosylation of viral proteins becomes better understood, carbohydrate-based antiviral vaccines against special viruses have attracted much attention. Significant efforts in carbohydrate synthesis and immunogenicity research have resulted in the development of multiple carbohydrate-based HIV vaccines. This review summarizes recent advances in synthetic carbohydrate-based vaccines design strategies and the applications of these vaccines in the prevention of HIV.

  • 加载中
    1. Adams EW, Ratner DM, Bokesch HR, McMahon JB, O'Keefe BR, Seeberger PH. 2004. Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem Biol, 11: 875-881.
        doi: 10.1016/j.chembiol.2004.04.010

    2. Alama SM, Dennisona SM, Aussedatd B, Vohrad Y, Parkd PK, Fern ndez-Tejadad A, Stewarta S, Jaegera FH, Anastia K, Blinna JH, Keplere TB, Bonsignori M, Liao H-X, Sodroski JG, Danishefsky SJ, Haynesa BF. 2013. Recognition of synthetic glycopeptides by HIV-1 broadly neutralizing antibodies and their unmutated ancestors. Proc Natl Acad Sci U S A, 110: 18214-18219.
        doi: 10.1073/pnas.1317855110

    3. Anish C, Schumann B, Pereira CL, Seeberger PH. 2014. Chemical biology approaches to designing defined carbohydrate vaccines. Chem Biol, 21: 38-50.
        doi: 10.1016/j.chembiol.2014.01.002

    4. Astronomo RD, Burton DR. 2010.Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov, 9: 308-324.
        doi: 10.1038/nrd3012

    5. Astronomo RD, Kaltgrad E, Udit AK, Wang SK, Doores KJ, Huang CY, Pantophlet R, Paulson JC, Wong CH, Finn MG, Burton DR. 2010. Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem Biol, 17: 357-370.
        doi: 10.1016/j.chembiol.2010.03.012

    6. Astronomo RD, Lee HK, Scanlan CN, Pantophlet R, Huang CY, Wilson IA, Blixt O, Dwek RA, Wong CH, Burton DR. 2008. A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. J Virol, 82: 6359-6368.
        doi: 10.1128/JVI.00293-08

    7. Blattner C, Lee JH, Sliepen K, Derking R, Falkowska E, Pe a ATdl, Cupo A, Julien J-P, Gils Mv, Lee PS, Peng W, Paulson JC, Poignard P, Burton DR, Moore JP, Sanders RW, Wilson IA, Ward AB. 2014. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity, 40: 669-680.
        doi: 10.1016/j.immuni.2014.04.008

    8. Burton DR, Mascola JR. 2015. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immunol, 16: 571-576.
        doi: 10.1038/ni.3158

    9. Cai H, Huang ZH, Shi L, Sun ZY, Zhao YF, Kunz H, Li YM. 2012. Variation of the glycosylation pattern in MUC1 glycopeptide BSA vaccines and its influence on the immune response. Angew Chem Int Ed Engl, 51: 1719-1723.
        doi: 10.1002/anie.v51.7

    10. Calarese DA, Lee HK, Huang CY, Best MD, Astronomo RD, Stanfield RL, Katinger H, Burton DR, Wong CH, Wilson IA. 2005. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A, 102: 13372-13377
        doi: 10.1073/pnas.0505763102

    11. Calarese DA, Lee HK, Huang CY, Best MD, Astronomo RD, Stanfield RL, Katinger H, Burton DR, Wong CH, Wilson IA. 2005. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A, 102: 13372-13377
        doi: 10.1073/pnas.0505763102

    12. Calin O, Eller S, Seeberger PH. 2013. Automated polysaccharide synthesis: assembly of a 30mer mannoside. Angew Chem Int Ed Engl, 52: 5862-5865.
        doi: 10.1002/anie.201210176

    13. Cavallari M, Stallforth P, Kalinichenko A, Rathwell DCK, Gronewold TMA, Adibekian A, Mori L, Landmann R, Seeberger PH, Libero GD. 2014. A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nat Chem Biol, 10: 950-958.
        doi: 10.1038/nchembio.1650

    14. Ciobanu M, Huang KT, Daguer JP, Barluenga S, Chaloin O, Schaeffer E, Mueller CG, Mitchell DA, Winssinger N. 2011. Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem Commun (Camb), 47: 9321-9323.
        doi: 10.1039/c1cc13213j

    15. Crispin M, Doores KJ. 2015. Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design. Curr Opin Virol, 11: 63-69.
        doi: 10.1016/j.coviro.2015.02.002

    16. Danishefsky SJ, Shue YK, Chang MN, Wong CH. 2015. Development of Globo-H cancer vaccine. Acc Chem Res, 48: 643-652.
        doi: 10.1021/ar5004187

    17. de Goede AL, Vulto AG, Osterhaus AD, Gruters RA. 2015. Understanding HIV infection for the design of a therapeutic vaccine. Part Ⅱ: Vaccination strategies for HIV. Ann Pharm Fr, 73: 169-179.

    18. Deng S, Bai L, Reboulet R, Matthew R, Engler DA, Teyton L, Bendelac A, Savage PB. 2014. A peptide-free, liposome-based oligosaccharide vaccine, adjuvanted with a natural killer T cell antigen, generates robust antibody responses. Chem Sci, 5: 1437-1441.
        doi: 10.1039/C3SC53471E

    19. Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR, Finn MG, Burton DR, Wilson IA, Davis BG. 2010. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci U S A, 107: 17107-17112.
        doi: 10.1073/pnas.1002717107

    20. Eller S, Collot M, Yin J, Hahm HS, Seeberger PH. 2013. Automated solid-phase synthesis of chondroitin sulfate glycosaminoglycans. Angew Chem Int Ed Engl, 52: 5858-5861.
        doi: 10.1002/anie.201210132

    21. Ensoli B, Cafaro A, Monini P, Marcotullio S, Ensoli F. 2014. Challenges in HIV Vaccine Research for Treatment and Prevention. Front Immunol, 5: 417.

    22. Fernandez-Tejada A, Canada FJ, Jimenez-Barbero J. 2015a. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chemistry, 21: 10616-10628.
        doi: 10.1002/chem.v21.30

    23. Fernandez-Tejada A, Haynes BF, Danishefsky SJ. 2015b. Designing synthetic vaccines for HIV. Expert Rev Vaccines, 14: 815-831.
        doi: 10.1586/14760584.2015.1027690

    24. Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV. 2015. Antibody recognition of carbohydrate epitopes. Glycobiology, 25: 920-952.
        doi: 10.1093/glycob/cwv037

    25. Haynes BF. 2015. New approaches to HIV vaccine development. Curr Opin Immunol, 35: 39-47.
        doi: 10.1016/j.coi.2015.05.007

    26. Hecht ML, Stallforth P, Silva DV, Adibekian A, Seeberger PH. 2009. Recent advances in carbohydrate-based vaccines. Curr Opin Chem Biol, 13: 354-359.
        doi: 10.1016/j.cbpa.2009.05.127

    27. Horiya S, Bailey JK, Temme JS, Guillen Schlippe YV, Krauss IJ. 2014a. Directed evolution of multivalent glycopeptides tightly recognized by HIV antibody 2G12. J Am Chem Soc, 136: 5407-5415.
        doi: 10.1021/ja500678v

    28. Horiya S, MacPherson IS, Krauss IJ. 2014b. Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol, 10: 990-999.
        doi: 10.1038/nchembio.1685

    29. Hsu CH, Hung SC, Wu CY, Wong CH. 2011. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl, 50: 11872-11923.
        doi: 10.1002/anie.v50.50

    30. Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. 2015. Carbohydrate-based vaccine adjuvants -discovery and development. Expert Opin Drug Discov, 10: 1133-1144.
        doi: 10.1517/17460441.2015.1067198

    31. Hurevich M, Seeberger PH. 2014. Automated glycopeptide assembly by combined solid-phase peptide and oligosaccharide synthesis. Chem Commun (Camb), 50: 1851-1853.
        doi: 10.1039/C3CC48761J

    32. Ingale S, Wolfert MA, Gaekwad J, Buskas T, Boons GJ. 2007. Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol, 3: 663-667.
        doi: 10.1038/nchembio.2007.25

    33. Joyce JG, Krauss IJ, Song HC, Opalka DW, Grimm KM, Nahas DD, Esser MT, Hrin R, Feng M, Dudkin VY, Chastain M, Shiver JW, Danishefsky SJ. 2008. An oligosaccharide-based HIV-1 2G12 mimotope vaccine induces carbohydrate-specific antibodies that fail to neutralize HIV-1 virions. Proc Natl Acad Sci U S A, 105: 15684-15689.
        doi: 10.1073/pnas.0807837105

    34. Julien JP, Sok D, Khayat R, Lee JH, Doores KJ, Walker LM, Ramos A, Diwanji DC, Pejchal R, Cupo A, Katpally U, Depetris RS, Stanfield RL, McBride R, Marozsan AJ, Paulson JC, Sanders RW, Moore JP, Burton DR, Poignard P, Ward AB, Wilson IA. 2013. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog, 9: e1003342.
        doi: 10.1371/journal.ppat.1003342

    35. Kabanova A, Adamo R, Proietti D, Berti F, Tontini M, Rappuoli R, Costantino P. 2010. Preparation, characterization and immunogenicity of HIV-1 related high-mannose oligosaccharides-CRM197 glycoconjugates. Glycoconj J, 27: 501-513.
        doi: 10.1007/s10719-010-9295-0

    36. Kandasamy J, Hurevich M, Seeberger PH. 2013. Automated solid phase synthesis of oligoarabinofuranosides. Chem Commun (Camb), 49: 4453-4455.
        doi: 10.1039/c3cc00042g

    37. Kandasamy J, Schuhmacher F, Hahm HS, Klein JC, Seeberger PH. 2014. Modular automated solid phase synthesis of dermatan sulfate oligosaccharides. Chem Commun (Camb), 50: 1875-1877.
        doi: 10.1039/C3CC48860H

    38. Kong L, Lee JH, Doores KJ, Murin CD, Julien JP, McBride R, Liu Y, Marozsan A, Cupo A, Klasse PJ, Hoffenberg S, Caulfield M, King CR, Hua Y, Le KM, Khayat R, Deller MC, Clayton T, Tien H, Feizi T, Sanders RW, Paulson JC, Moore JP, Stanfield RL, Burton DR, Ward AB, Wilson IA. 2013. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat Struct Mol Biol, 20: 796-803.
        doi: 10.1038/nsmb.2594

    39. Krauss IJ, Joyce JG, Finnefrock AC, Song HC, Dudkin VY, Geng X, Warren JD, Chastain M, Shiver JW, Danishefsky SJ. 2007. Fully synthetic carbohydrate HIV antigens designed on the logic of the 2G12 antibody. J Am Chem Soc, 129: 11042-11044.
        doi: 10.1021/ja074804r

    40. Krö ck L, Esposito D, Castagner B, Wang C-C, Bindsch dler P, Seeberger PH. 2012. Streamlined access to conjugation-ready glycans by automated synthesis. Chem Sci, 3: 1617-1622.
        doi: 10.1039/c2sc00940d

    41. Li H, Li B, Song H, Breydo L, Baskakov IV, Wang LX. 2005. Chemoenzymatic synthesis of HIV-1 V3 glycopeptides carrying two N-glycans and effects of glycosylation on the peptide domain. J Org Chem, 70: 9990-9996.
        doi: 10.1021/jo051729z

    42. Li Hg, Wang L-X. 2004. Design and synthesis of a template-assembled oligomannose cluster as an epitope mimic for human HIV-neutralizing antibody 2G12. Org Biomol Chem, 2: 483-488.
        doi: 10.1039/b314565d

    43. Liu H, Bi W, Wang Q, Lu L, Jiang S. 2015. Receptor binding domain based HIV vaccines. Biomed Res Int, 2015: 594109-594117.

    44. MacPherson IS, Temme JS, Habeshian S, Felczak K, Pankiewicz K, Hedstrom L, Krauss IJ. 2011. Multivalent glycocluster design through directed evolution. Angew Chem Int Ed Engl, 50: 11238-11242.
        doi: 10.1002/anie.v50.47

    45. Mann JK, Ndung'u T. 2015. HIV-1 vaccine immunogen design strategies. Virol J, 12: 3-13.
        doi: 10.1186/s12985-014-0221-0

    46. Marradi M, Di Gianvincenzo P, Enriquez-Navas PM, Martinez-Avila OM, Chiodo F, Yuste E, Angulo J, Penades S. 2011. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J Mol Biol, 410: 798-810.
        doi: 10.1016/j.jmb.2011.03.042

    47. Mayr LM, Zolla-Pazner S. 2015. Antibodies Targeting the Envelope of HIV-1. Microbiol Spectr, 3: AID-0025-2014.

    48. McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, O'Dell S, Patel N, Shahzad-ul-Hussan S, Yang Y, Zhang B, Zhou T, Zhu J, Boyington JC, Chuang GY, Diwanji D, Georgiev I, Kwon YD, Lee D, Louder MK, Moquin S, Schmidt SD, Yang ZY, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Burton DR, Koff WC, Walker LM, Phogat S, Wyatt R, Orwenyo J, Wang LX, Arthos J, Bewley CA, Mascola JR, Nabel GJ, Schief WR, Ward AB, Wilson IA, Kwong PD. 2011. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 480: 336-343.
        doi: 10.1038/nature10696

    49. Minor PD. 2015. Live attenuated vaccines: Historical successes and current challenges. Virology, 479-480: 379-392.
        doi: 10.1016/j.virol.2015.03.032

    50. Morelli L, Poletti L, Lay L. 2011. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. Eur J Org Chem, 2011: 5723-5777.
        doi: 10.1002/ejoc.v2011.29

    51. Moulard M, Decroly E. 2000. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochimica et Biophysica Acta: 121-132.

    52. Ni J, Song H, Wang Y, Stamatos NM, Wang LX. 2006. Toward a carbohydrate-based HIV-1 vaccine: synthesis and immunological studies of oligomannose-containing glycoconjugates. Bioconjug Chem, 17: 493-500.
        doi: 10.1021/bc0502816

    53. Nikolaev AV, Sizova OV. 2011. Synthetic neoglycoconjugates of cell-surface phosphoglycans of Leishmania as potential anti-parasite carbohydrate vaccines. Biochemistry(Mosc), 76: 761-773.

    54. Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT, Dai K, Loesgen S, Louder MK, Staupe RP, Yang Y, Zhang B, Parks R, Eudailey J, Lloyd KE, Blinn J, Alam SM, Haynes BF, Amin MN, Wang LX, Burton DR, Koff WC, Nabel GJ, Mascola JR, Bewley CA, Kwong PD. 2013. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat Struct Mol Biol, 20: 804-813.
        doi: 10.1038/nsmb.2600

    55. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA. 2011. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science, 334: 1097-1103.
        doi: 10.1126/science.1213256

    56. Peri F. 2013. Clustered carbohydrates in synthetic vaccines. Chem Soc Rev, 42: 4543-4556.
        doi: 10.1039/C2CS35422E

    57. Plante OJ, Palmacci ER, Seeberger PH. 2001. Automated solid-phase synthesis of oligosaccharides. Science, 291: 1523-1527.
        doi: 10.1126/science.1057324

    58. Qin Q, Yin Z, Bentley P, Huang X. 2014. Carbohydrate antigen delivery by water soluble copolymers as potential anti-?cancer vaccines. Med Chem Commun, 5: 1126-1129.
        doi: 10.1039/C4MD00103F

    59. Rodrigues AF, Soares HR, Guerreiro MR, Alves PM, Coroadinha AS. 2015. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology. Biotechnol J, 10: 1329-1344.
        doi: 10.1002/biot.201400387

    60. Roy R, Chieh Shiao T. 2011. Organic Chemistry and Immunochemical Strategies in the Design of Potent Carbohydrate-based Vaccines. CHIMIA, 65: 24-29.
        doi: 10.2533/chimia.2011.24

    61. Safari D, Marradi M, Chiodo F, Th Dekker HA, Shan Y, Adamo R, Oscarson S, Rijkers GT, Lahmann M, Kamerling JP, Penades S, Snippe H. 2012. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine (Lond), 7: 651-662.
        doi: 10.2217/nnm.11.151

    62. Said Hassane F, Phalipon A, Tanguy M, Guerreiro C, Belot F, Frisch B, Mulard LA, Schuber F. 2009. Rational design and immunogenicity of liposome-based diepitope constructs: application to synthetic oligosaccharides mimicking the Shigella flexneri 2a O-antigen. Vaccine, 27: 5419-5426.
        doi: 10.1016/j.vaccine.2009.06.031

    63. Sanders RW, Venturi M, Schiffner L, Kalyanaraman R, Katinger H, Lloyd KO, Kwong PD, Moore JP. 2002. The Mannose-Dependent Epitope for Neutralizing Antibody 2G12 on Human Immunodeficiency Virus Type 1 Glycoprotein gp120. J Virol, 76: 7293-7305.
        doi: 10.1128/JVI.76.14.7293-7305.2002

    64. Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R, Wilson IA, Katinger H, Dwek RA, Rudd PM, Burton DR. 2002. The Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2G12 Recognizes a Cluster of 1 2 Mannose Residues on the Outer Face of gp120. J Virol, 76: 7306-7321.
        doi: 10.1128/JVI.76.14.7306-7321.2002

    65. Schmidt D, Schuhmacher F, Geissner A, Seeberger PH, Pfrengle F. 2015. Automated synthesis of arabinoxylan-oligosaccharides enables characterization of antibodies that recognize plant cell wall glycans. Chemistry, 21: 5709-5713.
        doi: 10.1002/chem.201500065

    66. Seeberger PH. 2015. The logic of automated glycan assembly. Acc Chem Res, 48: 1450-1463.
        doi: 10.1021/ar5004362

    67. Seeberger PH, Werz DB. 2005. Automated synthesis of oligosaccharides as a basis for drug discovery. Nat Rev Drug Discov, 4: 751-763.
        doi: 10.1038/nrd1823

    68. Swarts BM, Guo Z. 2009. Carbohydrate-Based Vaccines and Immunotherapies. Hoboken: Wiley, pp. 167-193.

    69. Temme JS, Drzyzga MG, MacPherson IS, Krauss IJ. 2013. Directed evolution of 2G12-targeted nonamannose glycoclusters by SELMA. Chemistry, 19: 17291-17295.
        doi: 10.1002/chem.201303848

    70. Temme JS, MacPherson IS, DeCourcey JF, Krauss IJ. 2014. High temperature SELMA: evolution of DNA-supported oligomannose clusters which are tightly recognized by HIV bnAb 2G12. J Am Chem Soc, 136: 1726-1729.
        doi: 10.1021/ja411212q

    71. Thompson P, Lakshminarayanan V, Supekar NT, Bradley JM, Cohen PA, Wolfert MA, Gendler SJ, Boons G-J. 2015. Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Chem Commun (Camb), 51: 10214-10217.
        doi: 10.1039/C5CC02199E

    72. Tongo M, Burgers WA. 2014. Challenges in the design of a T cell vaccine in the context of HIV-1 diversity. Viruses, 6: 3968-3990.
        doi: 10.3390/v6103968

    73. UNAIDS. 2015. Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization (WHO). World AIDS day 2015 fact sheet (http://www.unaids.org/en/resources/campaigns/HowAIDSchangedeverything/factsheet).

    74. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD, Protocol GPI, Koff WC, Wilson IA, Burton DR, Poignard P. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature, 477: 466-470.W
        doi: 10.1038/nature10373

    75. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW, Protocol GPI, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science, 326: 285-289.
        doi: 10.1126/science.1178746

    76. Wang J, Li H, Zou G, Wang LX. 2007. Novel template-assembled oligosaccharide clusters as epitope mimics for HIV-neutralizing antibody 2G12. Design, synthesis, and antibody binding study. Org Biomol Chem, 5: 1529-1540.

    77. Wang LX. 2006. Toward oligosaccharide-and glycopeptide-based HIV vaccines. Curr Opin Drug Disc, 9: 194-206.

    78. Wang LX, Ni J, Singh S, Li H. 2004. Binding of high-mannose-type oligosaccharides and synthetic oligomannose clusters to human antibody 2G12: implications for HIV-1 vaccine design. Chem Biol, 11: 127-134.

    79. Wang SK, Liang PH, Astronomo RD, Hsu TL, Hsieh SL, Burton DR, Wong CH. 2008. Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci U S A, 105: 3690-3695.
        doi: 10.1073/pnas.0712326105

    80. Yang Q, Li C, Wei Y, Huang W, Wang LX. 2010. Expression, glycoform characterization, and antibody-binding of HIV-1 V3 glycopeptide domain fused with human IgG1-Fc. Bioconjug Chem, 21: 875-883.
        doi: 10.1021/bc9004238

    81. Gorska K, Huang KT, Chaloin O, Winssinger N. 2009. DNA-templated homo-and heterodimerization of peptide nucleic acid encoded oligosaccharides that mimick the carbohydrate epitope of HIV.Angew Chem Int Ed Engl, 48: 7695-7700.
        doi: 10.1002/anie.v48:41

  • 加载中

Figures(3)

Article Metrics

Article views(7513) PDF downloads(23) Cited by()

Related
Proportional views

    Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines

      Corresponding author: Jian Yin, jianyin@jiangnan.edu.cn
    • 1. Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
    • 2. Wuxi Medical School, Jiangnan University, Wuxi 214122, China

    Abstract: An effective vaccine for human immunodeficiency virus (HIV) is urgently needed to prevent HIV infection and progression to acquired immune deficiency syndrome (AIDS). As glycosylation of viral proteins becomes better understood, carbohydrate-based antiviral vaccines against special viruses have attracted much attention. Significant efforts in carbohydrate synthesis and immunogenicity research have resulted in the development of multiple carbohydrate-based HIV vaccines. This review summarizes recent advances in synthetic carbohydrate-based vaccines design strategies and the applications of these vaccines in the prevention of HIV.