Citation: Si-Qing Liu, Xiao Li, Ya-Nan Zhang, Ai-Li Gao, Cheng-Lin Deng, Jun-Hua Li, Shoukat Jehan, Nadia Jamil, Fei Deng, Hongping Wei, Bo Zhang. Detection, isolation, and characterization of chikungunya viruses associated with the Pakistan outbreak of 2016–2017 .VIROLOGICA SINICA, 2017, 32(6) : 511-519.  http://dx.doi.org/10.1007/s12250-017-4059-7

Detection, isolation, and characterization of chikungunya viruses associated with the Pakistan outbreak of 2016–2017

Chikungunya viruses from the 2016–2017 Pakistan outbreak

cstr: 32224.14.s12250-017-4059-7
  • Corresponding author: Bo Zhang, zhangbo@wh.iov.cn, ORCID: 0000-0002-8895-3679
  • Received Date: 04 September 2017
    Accepted Date: 12 December 2017
    Published Date: 21 December 2017
    Available online: 01 December 2017
  • The chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, which has infected millions of people in Africa, Asia, Americas, and Europe since it reemerged in India and Indian Ocean regions in 2005–2006. Starting in the middle of November 2016, CHIKV has been widely spread, and more than 4,000 cases of infections in humans were confirmed in Pakistan. Here, we report the first isolation and characterization of CHIKV from the Pakistan outbreak. Eight CHIKV strains were newly isolated from human serum samples using a cell culture procedure. A full-length genome sequence and eight complete envelope (E1) sequences of CHIKV from Pakistan were obtained in this study. Alignment of the CHIKV E1 sequences revealed that the eight new CHIKV isolates were highly homogeneous, with only two nonsynonymous substitutions found at generally conserved sites (E99 and Q235). Based on the comparison of 342 E1 sequences, the two nonsynonymous mutations were located in well-recognized domains associated with viral functions such as the cell fusion and vector specificity, suggesting their potential functional importance. Phylogenetic analysis indicated that the CHIKV strains from Pakistan originated from CHIKV circulating in the Indian region. This study helps elucidate the epidemics of CHIKV in Pakistan and also provides a foundation for studies of evolution and expansion of CHIKV in South Asia.

  • 加载中
    1. Chatterjee PK, Eng CH, Kielian M. 2002. Novel mutations that control the sphingolipid and cholesterol dependence of the semliki forest virus fusion protein. J Virol, 76: 12712–12722.
        doi: 10.1128/JVI.76.24.12712-12722.2002

    2. Chen R, Puri V, Fedorova N, Lin D, Hari KL, Jain R, Rodas JD, Das SR, Shabman RS, Weaver SC. 2016. Comprehensive genome-scale phylogenetic study provides new insights on the global expansion of chikungunya virus. J Virol, 90: 10600–10611.
        doi: 10.1128/JVI.01166-16

    3. Deng CL, Liu SQ, Zhang QY, Xu MY, Zhang HL, Gu DY, Shi L, He JA, Xiao GF, Zhang B. 2016a. Isolation and characterization of zika virus imported to china using c6/36 mosquito cells. Virol Sin, 31: 176–179.
        doi: 10.1007/s12250-016-3778-5

    4. Deng CL, Liu SQ, Zhou DG, Xu LL, Li XD, Zhang PT, Li PH, Ye HQ, Wei HP, Yuan ZM, Qin CF, Zhang B. 2016b. Development of neutralization assay using an egfp chikungunya virus. Viruses, 8: 181.
        doi: 10.3390/v8070181

    5. DeZure AD, Berkowitz NM, Graham BS, Ledgerwood JE. 2016. Whole-inactivated and virus-like particle vaccine strategies for chikungunya virus. J Infect Dis, 214: S497–S499.
        doi: 10.1093/infdis/jiw352

    6. Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD, Wengler G, Wengler G, Rey FA. 2001. The fusion glycoprotein shell of semliki forest virus: An icosahedral assembly primed for fusogenic activation at endosomal ph. Cell, 105: 137–148.
        doi: 10.1016/S0092-8674(01)00303-8

    7. Levy-Mintz P, Kielian M. 1991. Mutagenesis of the putative fusion domain of the semliki forest virus spike protein. J Virol, 65: 4292–4300.

    8. Liu SQ, Zhang B. 2016. Zika virus: A flavivirus caused pandemics in latin america. Virol Sin, 2: 1–2.

    9. Liu SQ, Li X, Deng CL, Yuan ZM, Zhang B. 2017. Development and evaluation of one-step multiplex real-time RT-PCR assay for simultaneous detection of zika virus and chikungunya virus. J Med Virol. doi: 10.1002/jmv.24970.

    10. Martina BEE, Koraka P, Osterhaus ADME. 2009. Dengue virus pathogenesis: An integrated view. Clin Microbiol Rev, 22: 564–581.
        doi: 10.1128/CMR.00035-09

    11. Ng LC, Hapuarachchi HC. 2010. Tracing the path of chikungunya virus—evolution and adaptation. Infect Genet Evol, 10: 876–885.
        doi: 10.1016/j.meegid.2010.07.012

    12. Rauf M, Fatima tuz Z, Manzoor S, Mehmood A, Bhatti S. 2017. Outbreak of chikungunya in pakistan. Lancet Infect Dis, 17: 258.

    13. Roussel A, Lescar J, Vaney MC, Wengler G, Wengler G, Rey FA. 2006. Structure and interactions at the viral surface of the envelope protein E1 of semliki forest virus. Structure, 14: 75–86.
        doi: 10.1016/j.str.2005.09.014

    14. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes J-M, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S. 2006. Genome microevolution of chikungunya viruses causing the indian ocean outbreak. PLoS Medicine, 3: e263.
        doi: 10.1371/journal.pmed.0030263

    15. Taubitz W, Cramer JP, Kapaun A, Pfeffer M, Drosten C, Dobler G, Burchard GD, Löscher T. 2007. Chikungunya fever in travelers: Clinical presentation and course. Clin Infect Dis, 45: e1–e4.
        doi: 10.1086/518701

    16. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathogens, 3: e201.
        doi: 10.1371/journal.ppat.0030201

    17. Tsetsarkin KA, Chen R, Sherman MB, Weaver SC. 2011a. Chikungunya virus: Evolution and genetic determinants of emergence. Curr Opin Virol, 1: 310–317.
        doi: 10.1016/j.coviro.2011.07.004

    18. Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC. 2011b. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci U S A, 108: 7872–7877.
        doi: 10.1073/pnas.1018344108

    19. Vashishtha M, Phalen T, Marquardt MT, Ryu JS, Ng AC, Kielian M. 1998. A single point mutation controls the cholesterol dependence of semliki forest virus entry and exit. The J Cell Biol, 140: 91–99.
        doi: 10.1083/jcb.140.1.91

    20. Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, Nasar F, Schuh AJ, Holmes EC, Higgs S, Maharaj PD, Brault AC, Weaver SC. 2010. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol, 84: 6497–6504.
        doi: 10.1128/JVI.01603-09

  • 加载中

Figures(3) / Tables(3)

Article Metrics

Article views(6515) PDF downloads(24) Cited by()

Related
Proportional views

    Detection, isolation, and characterization of chikungunya viruses associated with the Pakistan outbreak of 2016–2017

      Corresponding author: Bo Zhang, zhangbo@wh.iov.cn
    • 1. Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
    • 2. University of Chinese Academy of Sciences, Beijing 100012, China
    • 3. School of Life Science, Northeast Agricultural University, Harbin 150036, China
    • 4. Centre of Excellence in Science and Applied Technology, Islamabad 44000, Pakistan
    • 5. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

    Abstract: The chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, which has infected millions of people in Africa, Asia, Americas, and Europe since it reemerged in India and Indian Ocean regions in 2005–2006. Starting in the middle of November 2016, CHIKV has been widely spread, and more than 4,000 cases of infections in humans were confirmed in Pakistan. Here, we report the first isolation and characterization of CHIKV from the Pakistan outbreak. Eight CHIKV strains were newly isolated from human serum samples using a cell culture procedure. A full-length genome sequence and eight complete envelope (E1) sequences of CHIKV from Pakistan were obtained in this study. Alignment of the CHIKV E1 sequences revealed that the eight new CHIKV isolates were highly homogeneous, with only two nonsynonymous substitutions found at generally conserved sites (E99 and Q235). Based on the comparison of 342 E1 sequences, the two nonsynonymous mutations were located in well-recognized domains associated with viral functions such as the cell fusion and vector specificity, suggesting their potential functional importance. Phylogenetic analysis indicated that the CHIKV strains from Pakistan originated from CHIKV circulating in the Indian region. This study helps elucidate the epidemics of CHIKV in Pakistan and also provides a foundation for studies of evolution and expansion of CHIKV in South Asia.