Citation: Zuopeng Zhang, Sen Yuan, Shuting Xu, Deyin Guo, Lang Chen, Wei Hou, Min Wang. Suppression of HIV-1 Integration by Targeting HIV-1 Integrase for Degradation with A Chimeric Ubiquitin Ligase .VIROLOGICA SINICA, 2021, 36(3) : 424-437.  http://dx.doi.org/10.1007/s12250-020-00311-5

Suppression of HIV-1 Integration by Targeting HIV-1 Integrase for Degradation with A Chimeric Ubiquitin Ligase

  • Corresponding author: Wei Hou, houwei@whu.edu.cn, ORCID: 0000-0001-8816-3952
    Min Wang, min.wang@whu.edu.cn, ORCID: 0000-0003-1439-455X
  • Received Date: 14 March 2020
    Accepted Date: 14 September 2020
    Published Date: 13 November 2020
    Available online: 01 June 2021
  • Human immunodeficiency virus (HIV) attacks human immune system and causes life-threatening acquired immune deficiency syndrome (AIDS). Treatment with combination antiretroviral therapy (cART) could inhibit virus growth and slow progression of the disease, however, at the same time posing various adverse effects. Host ubiquitin-proteasome pathway (UPP) plays important roles in host immunity against pathogens including viruses by inducing degradation of viral proteins. Previously a series of methods for retargeting substrates for ubiquitin-proteasome degradation have been successfully established. In this study, we attempted to design and construct artificial chimeric ubiquitin ligases (E3s) based on known human E3s in order to manually target HIV-1 integrase for ubiquitin proteasome pathway-mediated degradation. Herein, a series of prototypical chimeric E3s have been designed and constructed, and original substrate-binding domains of these E3s were replaced with host protein domains which interacted with viral proteins. After functional assessment screening, 146LI was identified as a functional chimeric E3 for HIV-1 NL4-3 integrase. 146LI was then further optimized to generate 146LIS (146LI short) which has been shown to induce Lys48-specific polyubiquitination and reduce protein level of HIV-1 NL4-3 integrase more effectively in cells. Lymphocyte cells with 146LIS knock-in generated by CRISPR/Cas-mediated homology-directed repair (HDR) showed remarkably decreased integration of HIV-1 NL4-3 viral DNAs and reduced viral replication without obvious cell cytotoxicity. Our study successfully obtained an artificial chimeric E3 which can induce Lys48-specific polyubiquitination and proteasome-mediated degradation of HIV-1 NL4-3 integrase, thus effectively inhibiting viral DNA integration and viral replication upon virus infection.


  • 加载中
    1. Ali H, Mano M, Braga L, Naseem A, Marini B, Vu DM, Collesi C, Meroni G, Lusic M, Giacca M (2019) Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nat Commun 10:926
        doi: 10.1038/s41467-019-08810-0

    2. Bartholomeeusen K, Christ F, Hendrix J, Rain JC, Emiliani S, Benarous R, Debyser Z, Gijsbers R, De Rijck J (2009) Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ. J Biol Chem 284:11467–11477
        doi: 10.1074/jbc.M807781200

    3. Bego MG, Cote E, Aschman N, Mercier J, Weissenhorn W, Cohen EA (2015) Vpu exploits the cross-talk between BST2 and the ILT7 receptor to suppress anti-HIV-1 responses by plasmacytoid dendritic cells. PLoS Pathog 11:e1005024
        doi: 10.1371/journal.ppat.1005024

    4. Bushman FD, Craigie R (1991) Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc Natl Acad Sci U S A 88:1339–1343
        doi: 10.1073/pnas.88.4.1339

    5. Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR, Hongo JA, Davis D, Kirkpatrick DS, Polakis P, Costa M (2011) Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS ONE 6:e22595
        doi: 10.1371/journal.pone.0022595

    6. Cherepanov P, Pluymers W, Claeys A, Proost P, De Clercq E, Debyser Z (2000) High-level expression of active HIV-1 integrase from a synthetic gene in human cells. FASEB J 14:1389–1399

    7. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6:442–448
        doi: 10.1038/nchembio.370

    8. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21
        doi: 10.1016/0092-8674(94)90396-4

    9. Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M (2017) A method for the acute and rapid degradation of endogenous proteins. Cell 171(1692–1706):e1618

    10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
        doi: 10.1126/science.1231143

    11. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, Lazzarin A, Clotet B, Kumar PN, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Zhao J, Chen J, Ryan DM, Rhodes RR, Killar JA, Gilde LR, Strohmaier KM, Meibohm AR, Miller MD, Hazuda DJ, Nessly ML, DiNubile MJ, Isaacs RD, Teppler H, Nguyen BY, Teams BS (2008) Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med 359:355–365
        doi: 10.1056/NEJMoa0708978

    12. Engelman A, Oztop I, Vandegraaff N, Raghavendra NK (2009) Quantitative analysis of HIV-1 preintegration complexes. Methods 47:283–290
        doi: 10.1016/j.ymeth.2009.02.005

    13. Feng L, Sharma A, Slaughter A, Jena N, Koh Y, Shkriabai N, Larue RC, Patel PA, Mitsuya H, Kessl JJ, Engelman A, Fuchs JR, Kvaratskhelia M (2013) The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 288:15813–15820
        doi: 10.1074/jbc.M112.443390

    14. Fuchs SY, Lee CG, Pan ZQ, Ronai Z (2002) SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 110:531
        doi: 10.1016/S0092-8674(02)00902-9

    15. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, Zengerle M, Ciulli A (2017) Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol 13:514–521
        doi: 10.1038/nchembio.2329

    16. Guo Y, Dong L, Qiu X, Wang Y, Zhang B, Liu H, Yu Y, Zang Y, Yang M, Huang Z (2014) Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505:229–233
        doi: 10.1038/nature12884

    17. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010a) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236
        doi: 10.1038/nature08784

    18. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010b) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci USA 107:20057–20062
        doi: 10.1073/pnas.1010246107

    19. Hare S, Maertens GN, Cherepanov P (2012) 3'-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 31:3020–3028
        doi: 10.1038/emboj.2012.118

    20. Hobbs S, Jitrapakdee S, Wallace JC (1998) Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem Biophys Res Commun 252:368–372
        doi: 10.1006/bbrc.1998.9646

    21. Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, Zhuang K, Ho W, Hou W, Huang J, Guo D (2015) Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 5:15577
        doi: 10.1038/srep15577

    22. Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP, Lee Y, Ko HS, Lee BD, Poirier GG, Dawson VL, Dawson TM (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci USA 108:14103–14108
        doi: 10.1073/pnas.1108799108

    23. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229
        doi: 10.1146/annurev-biochem-060310-170328

    24. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505
        doi: 10.1038/nprot.2009.22

    25. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372
        doi: 10.1007/s13238-015-0153-5

    26. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708
        doi: 10.1093/nar/gkg519

    27. Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, Engelborghs Y (2003) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278:33528–33539
        doi: 10.1074/jbc.M303594200

    28. Maertens GN, Cherepanov P, Engelman A (2006) Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. J Cell Sci 119:2563–2571
        doi: 10.1242/jcs.02995

    29. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
        doi: 10.1126/science.1232033

    30. Merling RK, Sweeney CL, Chu J, Bodansky A, Choi U, Priel DL, Kuhns DB, Wang H, Vasilevsky S, De Ravin SS, Winkler T, Dunbar CE, Zou J, Zarember KA, Gallin JI, Holland SM, Malech HL (2015) An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther 23:147–157
        doi: 10.1038/mt.2014.195

    31. Miyakawa K, Matsunaga S, Yokoyama M, Nomaguchi M, Kimura Y, Nishi M, Kimura H, Sato H, Hirano H, Tamura T, Akari H, Miura T, Adachi A, Sawasaki T, Yamamoto N, Ryo A (2019) PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation. Nat Commun 10:1844
        doi: 10.1038/s41467-019-09867-7

    32. Mousnier A, Kubat N, Massias-Simon A, Segeral E, Rain JC, Benarous R, Emiliani S, Dargemont C (2007) von Hippel Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step. Proc Natl Acad Sci USA 104:13615–13620
        doi: 10.1073/pnas.0705162104

    33. Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT (2016) Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep 15:210–218
        doi: 10.1016/j.celrep.2016.03.001

    34. Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6:917–922
        doi: 10.1038/nmeth.1401

    35. Patil G, Xu L, Wu Y, Song K, Hao W, Hua F, Wang L, Li S (2020) TRIM41-mediated ubiquitination of nucleoprotein limits vesicular stomatitis virus infection. Viruses 12:131
        doi: 10.3390/v12020131

    36. Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4:236–248
        doi: 10.1038/nrd1660

    37. Portnoff AD, Stephens EA, Varner JD, DeLisa MP (2014) Ubiquibodies, synthetic E3 ubiquitin ligases endowed with unnatural substrate specificity for targeted protein silencing. J Biol Chem 289:7844–7855
        doi: 10.1074/jbc.M113.544825

    38. Pyeon D, Timani KA, Gulraiz F, He JJ, Park IW (2016) Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation. Virus Res 223:161–169
        doi: 10.1016/j.virusres.2016.07.009

    39. Saeki Y (2017) Ubiquitin recognition by the proteasome. J Biochem 161:113–124

    40. Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K, Christ F, Bushman FD, Debyser Z, Gijsbers R (2012) LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 8:e1002558
        doi: 10.1371/journal.ppat.1002558

    41. Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ, Fadel HJ, Malani N, Male F, Wu L, Poeschla E, Bushman FD, Fuchs JR, Kvaratskhelia M (2014) A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog 10:e1004171
        doi: 10.1371/journal.ppat.1004171

    42. Simon V, Bloch N, Landau NR (2015) Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 16:546–553
        doi: 10.1038/ni.3156

    43. Smialowski P, Doose G, Torkler P, Kaufmann S, Frishman D (2012) PROSO Ⅱ–a new method for protein solubility prediction. FEBS J 279:2192–2200
        doi: 10.1111/j.1742-4658.2012.08603.x

    44. Sowd GA, Serrao E, Wang H, Wang W, Fadel HJ, Poeschla EM, Engelman AN (2016) A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc Natl Acad Sci USA 113:E1054–1063
        doi: 10.1073/pnas.1524213113

    45. Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14:36–46
        doi: 10.1016/j.ccr.2008.05.003

  • 加载中

Figures(7)

Article Metrics

Article views(4892) PDF downloads(19) Cited by()

Related
Proportional views

    Suppression of HIV-1 Integration by Targeting HIV-1 Integrase for Degradation with A Chimeric Ubiquitin Ligase

      Corresponding author: Wei Hou, houwei@whu.edu.cn
      Corresponding author: Min Wang, min.wang@whu.edu.cn
    • 1. School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
    • 2. Centre for Infection and Inmunity Study(CIIS), School of Medicine, Sun Yat-sen University, Guangzhou 518107, China
    • 3. Renmin Hospital of Wuhan University, Wuhan 430060, China

    Abstract: 

    Human immunodeficiency virus (HIV) attacks human immune system and causes life-threatening acquired immune deficiency syndrome (AIDS). Treatment with combination antiretroviral therapy (cART) could inhibit virus growth and slow progression of the disease, however, at the same time posing various adverse effects. Host ubiquitin-proteasome pathway (UPP) plays important roles in host immunity against pathogens including viruses by inducing degradation of viral proteins. Previously a series of methods for retargeting substrates for ubiquitin-proteasome degradation have been successfully established. In this study, we attempted to design and construct artificial chimeric ubiquitin ligases (E3s) based on known human E3s in order to manually target HIV-1 integrase for ubiquitin proteasome pathway-mediated degradation. Herein, a series of prototypical chimeric E3s have been designed and constructed, and original substrate-binding domains of these E3s were replaced with host protein domains which interacted with viral proteins. After functional assessment screening, 146LI was identified as a functional chimeric E3 for HIV-1 NL4-3 integrase. 146LI was then further optimized to generate 146LIS (146LI short) which has been shown to induce Lys48-specific polyubiquitination and reduce protein level of HIV-1 NL4-3 integrase more effectively in cells. Lymphocyte cells with 146LIS knock-in generated by CRISPR/Cas-mediated homology-directed repair (HDR) showed remarkably decreased integration of HIV-1 NL4-3 viral DNAs and reduced viral replication without obvious cell cytotoxicity. Our study successfully obtained an artificial chimeric E3 which can induce Lys48-specific polyubiquitination and proteasome-mediated degradation of HIV-1 NL4-3 integrase, thus effectively inhibiting viral DNA integration and viral replication upon virus infection.