Citation: Yan-chun CHE, Li JIANG, Qi-han LI. Molecular Modification of a HSV-1 Protein and Its Associated Gene Transcriptional Regulation .VIROLOGICA SINICA, 2008, 23(6) : 394-398.  http://dx.doi.org/10.1007/s12250-008-2994-z

Molecular Modification of a HSV-1 Protein and Its Associated Gene Transcriptional Regulation

  • Corresponding author: Qi-han LI, Imbcams.LQ@gmail.com
  • Received Date: 08 August 2008
    Accepted Date: 17 September 2008
    Available online: 01 December 2008

    Fund Project: National Natural Science Foundation of China 30670094National Natural Science Foundation of China 30700028

  • The molecular modifications of Herpes Simplex Virus Type I (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions. The cellular chromatin-remodeling/ assembly is involved in HSV-1 associated gene transcriptional regulation in human cells harboring HSV-1 lytic or latent infections. Further investigation on these biological events would provide a better understanding of the mechanisms of HSV-1 viral gene transcriptional regulation

  • 加载中
    1. Ackermann M, Braun D K, Pereira L, et al. 1984. Characterization of herpes simplex virus 1 alpha proteins 0, 4, and 27 with monoclonal antibodies. J Virol, 52: 108-118.

    2. Amelio A L, McAnany P K, Bloom D C. 2006. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol, 80(5):2358-2368.
        doi: 10.1128/JVI.80.5.2358-2368.2006

    3. Bryant H E, Matthews D A, Wadd S, et al. 2000. Interaction between Herpes Simplex Virus Type 1 IE63 Protein and Cellular Protein p32. J Virol, 74 (23): 11322-11328.
        doi: 10.1128/JVI.74.23.11322-11328.2000

    4. Coleman H M. 2008. Histone modifications associated with herpes simplex virus type 1 genomes during quies-cence and following ICP0-mediated depression. J Gen Virol, 89:68-77.
        doi: 10.1099/vir.0.83272-0

    5. Davido D J, von Zagorski W F, Lane W S, et al. 2005. Phosphorylation site mutations affect herpes simplex virus type 1 ICP0 function. J Virol, 79 (2): 1232-1243.
        doi: 10.1128/JVI.79.2.1232-1243.2005

    6. Deshmane S, Fraser N W. 1989. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol, 63: 943-947.

    7. Everett R D, Maul G G. 1994. HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO J, 13: 5062-5069.

    8. Gu H, Roizman B. 2007. Herpes simplex virus-infected cell protein blocks the silencing of viral DNA by disso-ciating histone deacetylase from The CoREST-REST complex. Proc Natl Acad Sci USA, 104: 17134-17139.
        doi: 10.1073/pnas.0707266104

    9. Herrera F J, Triezenberg S J. 2004. VP16-dependent association of chromatin-modifying coactivators and under-representation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol, 78: 9689-9696.
        doi: 10.1128/JVI.78.18.9689-9696.2004

    10. Kent J R. 2004. During lylic infection herpes simplex virus type 1 is associated with histones bearing modifi-cations that correlate with active transcription. J Virol, 78: 10178-10186.
        doi: 10.1128/JVI.78.18.10178-10186.2004

    11. Kramer M F, Chen S H, Knipe D M. et al. 1998. Accumulation of viral transcripts and DNA during esta-blishment of latency by herpes simplex virus. J Virol, 72: 1177-1185.

    12. Kraus L W, Manning T E, Kadonaga T J. 1999.Biochemical Analysis of Distinct Activation Functions in p300 That Enhance Transcription Initiation with Chromatin Templates. Mol Cell Biol, 19: 8123-8135.
        doi: 10.1128/MCB.19.12.8123

    13. Kubat N J, Amelio A L, Giordani N V, et al. 2004. The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol, 78 (22): 12508-12518.
        doi: 10.1128/JVI.78.22.12508-12518.2004

    14. Leinbach S S, Summers W C. 1980. The structure of herpes simplex virus type 1 DNA as probed by micro-coccal nuclease digestion. J Gen Virol, 51: 45-59.
        doi: 10.1099/0022-1317-51-1-45

    15. Li W, Li Q. 2006. Improvement of transcriptional activity of ICP0 on HSV-1 gene by PCAF. Virology, 87: 1843-1857.

    16. Lomonte P, Thomas J, Texier P, et al. 2004. Functional interaction between class Ⅱ histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol, 78 (13): 6744-6757.
        doi: 10.1128/JVI.78.13.6744-6757.2004

    17. Margolis T D. 2007. Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia. J Virol, 81: 11069-11074.
        doi: 10.1128/JVI.00243-07

    18. Mersfelder E L, Parthun M R. 2006. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res, 34 (9): 2653-2662.
        doi: 10.1093/nar/gkl338

    19. Neumann1 D M, Stark1 D T, Kodi1V, et al. 2005. Assessment of the association of acetyl–histone 3 to the HSV–1 genes during latency and induced ocular reacti-vation. Ophthalmol Vis Sci, 46: 2800.
        doi: 10.1167/iovs.05-0147

    20. Oh J, Fraser N W. 2008. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J Virol, 82 (7): 3530-3537.
        doi: 10.1128/JVI.00586-07

    21. Sedarati F, Margolis T P, Stevens J G. 1993. Latent infection can be established with drastically restricted transcription and replication of the HSV-1 genome. Virology, 192: 687-691.
        doi: 10.1006/viro.1993.1089

    22. Simpson-Holley M, Baines J, Roller R. 2004. Herpes simplex virus UL31 and UL34 gene products promote the late maturation of viral replication compartment to the nuclear periphery. J Virol, 78: 5591-5600.
        doi: 10.1128/JVI.78.11.5591-5600.2004

    23. Sterner D E, Berger S L. Acetylation of histones and transcription-related factor. Microbiol Mol Biol Rev, 64: 435-459. 2000.
        doi: 10.1128/MMBR.64.2.435-459.2000

    24. Strahl B D, Auis C D. 2000. The language of covalent histone modifications. Nature, 403: 41-45.
        doi: 10.1038/47412

    25. Strang B L, Stow N D. 2005. Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol, 79 (19): 12487-12494.
        doi: 10.1128/JVI.79.19.12487-12494.2005

    26. Wolffe A P, Matzke M A. 1999. Epigenetics: regulation through repression. Science, 286 (5439): 481-486.
        doi: 10.1126/science.286.5439.481

    27. Wysocka J, Herr W. 2003. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch trends. Biochem Sci, 28: 294-304.
        doi: 10.1016/S0968-0004(03)00088-4

    28. Yu X, Li Q. 2003. Interaction between VP22 and VP16 of HSV-1 tugment is capable of blocking transcription of α–gene through inhibition of HAT activity. J Bio Chem, 84: 2501-2510.

  • 加载中

Article Metrics

Article views(4580) PDF downloads(15) Cited by()

Related
Proportional views

    Molecular Modification of a HSV-1 Protein and Its Associated Gene Transcriptional Regulation

      Corresponding author: Qi-han LI, Imbcams.LQ@gmail.com
    • Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 379 Jiao Ling Road, Kunming 650118, China
    Fund Project:  National Natural Science Foundation of China 30670094National Natural Science Foundation of China 30700028

    Abstract: The molecular modifications of Herpes Simplex Virus Type I (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions. The cellular chromatin-remodeling/ assembly is involved in HSV-1 associated gene transcriptional regulation in human cells harboring HSV-1 lytic or latent infections. Further investigation on these biological events would provide a better understanding of the mechanisms of HSV-1 viral gene transcriptional regulation