Citation: Yijie Ma, Dustin Verpooten, Bin He. Herpes Simplex Viruses and Induction of Interferon Responses .VIROLOGICA SINICA, 2008, 23(6) : 416-428.  http://dx.doi.org/10.1007/s12250-008-2999-7

Herpes Simplex Viruses and Induction of Interferon Responses

  • Corresponding author: Bin He, tshuo@uic.edu
  • Received Date: 01 September 2008
    Accepted Date: 03 September 2008
    Available online: 01 December 2008
  • Herpes simplex viruses (HSV) are human pathogens responsible for a variety of diseases, including localized mucocutaneous lesions, encephalitis, and disseminated diseases. HSV infection leads to rapid induction of innate immune responses. A critical part of this host response is the type I IFN system including the induction of type I IFNs, IFN-mediated signaling and amplification of IFN response. This provides the host with immediate countermeasure during acute infection to limit initial viral replication and to facilitate an appropriate adaptive immune response. However, HSV has devised multiple strategies to evade and interfere with innate immunity. This review will focus on the induction of type I IFN response by HSV during acute infection and current knowledge of mechanisms by which HSV interferes with this induction process.

  • 加载中
    1. Alexopoulou L, Holt A C, Medzhitov R, et al. 2001. Recognition of double-stranded RNA and activation of NF-[kappa]B by Toll-like receptor 3. Nature, 413 (6857):732.
        doi: 10.1038/35099560

    2. Ankel H, Westra D F, Welling-Wester S, et al. 1998. Induction of Interferon-[alpha] by Glycoprotein D of Herpes Simplex Virus: A Possible Role of Chemokine Receptors. Virology, 251 (2):317.
        doi: 10.1006/viro.1998.9432

    3. Aravalli R, Peterson P, Lokensgard J. 2007. Toll-like Receptors in Defense and Damage of the Central Nervous System. J Neuroimmune Pharmacol, 2 (4):297.
        doi: 10.1007/s11481-007-9071-5

    4. Au W, Moore P A, LaFleur D W, et al. 1998. Characterization of the Interferon Regulatory Factor-7 and Its Potential Role in the Transcription Activation of Interferon A Genes. J Biol Chem, 273 (44):29210-29217.
        doi: 10.1074/jbc.273.44.29210

    5. Au W, Moore P A, Lowther W, et al. 1995. Identification of a Member of the Interferon Regulatory Factor Family that Binds to the Interferon-Stimulated Response Element and Activates Expression of Interferon-Induced Genes. Proc Natl Acad Scie USA, 92 (25):11657-11661.
        doi: 10.1073/pnas.92.25.11657

    6. Bosnjak L, Jones C A, Abendroth A, et al. 2005. Dendritic Cell Biology in Herpesvirus Infections. Viral Immunol, 18 (3):419-433.
        doi: 10.1089/vim.2005.18.419

    7. Casrouge A, Zhang S Y, Eidenschenk C, et al. 2006. Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science, 314 (5797):308-312.
        doi: 10.1126/science.1128346

    8. Cassady K A, Gross M, Roizman B. 1998. The Second-Site Mutation in the Herpes Simplex Virus Recombinants Lacking the gamma 134.5 Genes Precludes Shutoff of Protein Synthesis by Blocking the Phosphory-lation of eIF-2alpha. J Virol, 72 (9):7005-7011.

    9. Cassady K A, Gross M, Roizman B. 1998. The Herpes Simplex Virus Us11 Protein Effectively Compensates for the g134.5 Gene if Present before Activation of Protein Kinase R by Precluding Its Phosphorylation and That of the alpha subunit of Eukaryotic Translation Initiation Factor 2. J Virol, 72 (11):8620-8626.

    10. Cerveny M, Hessefort S, Yang K, et al. 2003. Amino acid substitutions in the effector domain of the g134.5 protein of herpes simplex virus 1 have differential effects on viral response to interferon-a. Virology, 307 (2):290.
        doi: 10.1016/S0042-6822(02)00075-2

    11. Chee A V, Roizman B. 2004. Herpes Simplex Virus 1 Gene Products Occlude the Interferon Signaling Pathway at Multiple Sites. J Virol, 78 (8):4185-4196.
        doi: 10.1128/JVI.78.8.4185-4196.2004

    12. Cheng G, Brett M E, He B. 2001. Val193 and Phe195 of the g134.5 Protein of Herpes Simplex Virus 1 Are Required for Viral Resistance to Interferon-α/β. Virology, 290 (1):115.
        doi: 10.1006/viro.2001.1148

    13. Cheng G, Gross M, Brett M E, et al. 2001. AlaArg Motif in the Carboxyl Terminus of the g134.5 Protein of Herpes Simplex Virus Type 1 Is Required for the Formation of a High-Molecular-Weight Complex That Dephosphorylates eIF-2a. J Virol, 75 (8):3666-3674.
        doi: 10.1128/JVI.75.8.3666-3674.2001

    14. Cheng G, Yang K, He B. 2003. Dephosphorylation of eIF-2a Mediated by the g134.5 Protein of Herpes Simplex Virus Type 1 Is Required for Viral Response to Interferon but Is Not Sufficient for Efficient Viral Replication. J Virol, 77 (18):10154-10161.
        doi: 10.1128/JVI.77.18.10154-10161.2003

    15. Cheng G, Zhong J, Chung J, et al. 2007. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Scie USA, 104 (21):9035-9040.
        doi: 10.1073/pnas.0703285104

    16. Collins S E, Noyce R S, Mossman K L. 2004. Innate Cellular Response to Virus Particle Entry Requires IRF3 but Not Virus Replication. J Virol, 78 (4):1706-1717.
        doi: 10.1128/JVI.78.4.1706-1717.2004

    17. Diebold S S, Kaisho T, Hemmi H, et al. 2004. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science, 303 (5663):1529-1531.
        doi: 10.1126/science.1093616

    18. Duerst R J, Morrison L A. 2004. Herpes simplex virus 2 virion host shutoff protein interferes with type Ⅰ interferon production and responsiveness. Virology, 322 (1):158.
        doi: 10.1016/j.virol.2004.01.019

    19. Eidson K M, Hobbs W E, Manning B J, et al. 2002. Expression of Herpes Simplex Virus ICP0 Inhibits the Induction of Interferon-Stimulated Genes by Viral In-fection.J Virol, 76 (5):2180-2191.
        doi: 10.1128/jvi.76.5.2180-2191.2002

    20. Elain G, Romero P, Segal D, et al. 2007. TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 317 (5844): 1522-1527.
        doi: 10.1126/science.1139522

    21. Fitzgerald K A, McWhirter S M, Faia K L, et al. 2003. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4 (5):491.
        doi: 10.1038/ni921

    22. Garcia-Sastre A, Biron C A. 2006. Type 1 Interferons and the Virus-Host Relationship: A Lesson in Detente. Science, 312(5775):879-882.
        doi: 10.1126/science.1125676

    23. Garcia M A, Meurs E F, Esteban M. 2007. The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89 (6-7):799.
        doi: 10.1016/j.biochi.2007.03.001

    24. Gitlin L, Barchet W, Gilfillan S, et al. 2006. Essential role of mda-5 in type Ⅰ IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picor-navirus. Proc Natl Acad Scie USA, 103 (22):8459-8464.
        doi: 10.1073/pnas.0603082103

    25. Guo J, Peters K L, Sen G C. 2000. Induction of the Human Protein P56 by Interferon, Double-Stranded RNA, or Virus Infection. Virology, 267 (2):209.
        doi: 10.1006/viro.1999.0135

    26. Hacker H, Redecke V, Blagoev B, et al. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439 (7073):204.
        doi: 10.1038/nature04369

    27. He B, Chou J, Brandimarti R, et al. 1997. Suppression of the phenotype of g134.5- herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the α 47 gene. J Virol, 71 (8):6049-6054.

    28. He B, Gross M, Roizman B. 1997. The g134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated pro-tein kinase. PNAS, 94 (3):843-848.
        doi: 10.1073/pnas.94.3.843

    29. Heil F, Hemmi H, Hochrein H, et al. 2004. Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science, 303 (5663):1526-1529.
        doi: 10.1126/science.1093620

    30. Hemmi H, Takeuchi O, Kawai T, et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature, 408 (6813):740.
        doi: 10.1038/35047123

    31. Herbst-Kralovetz M M, Pyles R B. 2006. Toll-like Receptors, Innate Immunity and HSV Pathogenesis. Herpes, 13 (2):37-41.

    32. Hochrein H, Schlatter B, O'Keeffe M, et al. 2004. Herpes simplex virus type-1 induces IFN-{alpha} produc-tion via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Scie USA, 101 (31):11416-11421.
        doi: 10.1073/pnas.0403555101

    33. Hornung V, Ellegast J, Kim S, et al. 2006. 5'-Triphosp-hate RNA Is the Ligand for RIG-Ⅰ. Science, 314 (5801):994-997.
        doi: 10.1126/science.1132505

    34. Ishii K J, Akira S. 2006. Innate immune recognition of, and regulation by, DNA. Trends Immunol, 27 (11):525.
        doi: 10.1016/j.it.2006.09.002

    35. Ishii K J, Coban C, Kato H, et al. 2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol, 7 (1):40.
        doi: 10.1038/ni1282

    36. Ishii K J, Kawagoe T, Koyama S, et al. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature, 451 (7179):725.
        doi: 10.1038/nature06537

    37. Jacquemont B, Roizman B. 1975. RNA synthesis in cells infected with herpes simplex virus. X. Properties of viral symmetric transcripts and of double-stranded RNA prepared from them. J Virol, 15 (4):707-713.

    38. Jiang Z, Mak T W, Sen G, et al. 2004. Toll-like receptor 3-mediated activation of NF-{kappa}B and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-{beta}. Proc Natl Acad Scie USA, 101 (10):3533-3538.
        doi: 10.1073/pnas.0308496101

    39. Johnson K E, Song B, Knipe D M. 2008. Role for herpes simplex virus 1 ICP27 in the inhibition of type Ⅰ interferon signaling. Virology, 374 (2):487.
        doi: 10.1016/j.virol.2008.01.001

    40. Kato H, Takeuchi O, Sato S, et al. 2006. Differential roles of MDA5 and RIG-Ⅰ helicases in the recognition of RNA viruses. Nature, 441 (7089):101.
        doi: 10.1038/nature04734

    41. Kawai T, Takahashi K, Sato S, et al. 2005. IPS-1, an adaptor triggering RIG-Ⅰ-and Mda5-mediated type Ⅰ in-terferon induction. Nat Immunol, 6 (10):981.
        doi: 10.1038/ni1243

    42. Kawai T, Akira S. 2006. Innate immune recognition of viral infection. Nat Immunol, 7 (2):131.
        doi: 10.1038/ni1303

    43. Kim J C, Lee S Y, Kim S Y, et al. 2008. HSV-1 ICP27 suppresses NF-[kappa]B activity by stabilizing Ⅰ[kappa]B [alpha]. FEBS Letters, 582 (16):2371.
        doi: 10.1016/j.febslet.2008.05.044

    44. Konat G W, Kielian T, Marriott I. 2006. The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem, 99 (1):1-12.
        doi: 10.1111/jnc.2006.99.issue-1

    45. Korom M, Wylie K M, Morrison L A. 2008. Selective Ablation of Virion Host Shutoff Protein RNase Activity Attenuates Herpes Simplex Virus 2 in Mice. J Virol, 82 (7):3642-3653.
        doi: 10.1128/JVI.02409-07

    46. Krug A, Luker G D, Barchet W, et al. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood, 103 (4):1433-1437.

    47. Ku C L, von Bernuth H, Picard C, et al. 2007. Selective predisposition to bacterial infections in IRAK-4 deficient children: IRAK-4 dependent TLRs are otherwise redundant in protective immunity. J Exp Med, 204 (10):2407-2422.
        doi: 10.1084/jem.20070628

    48. Kumar-Sinha C, Varambally S, Sreekumar A, et al. 2002. Molecular Cross-talk between the TRAIL and Interferon Signaling Pathways. J Biol Chem, 277 (1):575-585.
        doi: 10.1074/jbc.M107795200

    49. Kumar H, Zheng M, Atherton S S, et al. 2006. Herpes simplex virus 1 infection induces the expression of proin-flammatory cytokines, interferons and TLR7 in human corneal epithelial cells. Immunology, 117 (2):167-176.
        doi: 10.1111/imm.2006.117.issue-2

    50. Kurt-Jones E A, Chan M, Zhou S, et al. 2004. Herpes simplex virus 1 interaction with Toll-like receptor 2 contri-butes to lethal encephalitis. Proc Natl Acad Scie USA, 101 (5):1315-1320.
        doi: 10.1073/pnas.0308057100

    51. Lebon P. 1985. Inhibition of Herpes Simplex Virus Type 1-induced Interferon Synthesis by Monoclonal Antibodies against Viral Glycoprotein D and by Lysosomotropic Drugs.J Gen Virol, 66 (12):2781-2786.
        doi: 10.1099/0022-1317-66-12-2781

    52. Leib D A, Harrison T E, Laslo K M, et al. 1999. Interferons Regulate the Phenotype of Wild-type and Mutant Herpes Simplex Viruses In Vivo. J Exp Med, 189 (4):663-672.
        doi: 10.1084/jem.189.4.663

    53. Lin R, Noyce R S, Collins S E, et al. 2004. The Herpes Simplex Virus ICP0 RING Finger Domain Inhibits IRF3-and IRF7-Mediated Activation of Interferon-Stimulated Genes. J Virol, 78 (4):1675-1684.
        doi: 10.1128/JVI.78.4.1675-1684.2004

    54. Lund J, Sato A, Akira S, et al. 2003. Toll-like Receptor 9-mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. J Exp Med, 198 (3):513-520.
        doi: 10.1084/jem.20030162

    55. Malmgaard L, Paludan S. R. 2003. Interferon (IFN)-{alpha}/{beta}, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-{gamma} during infection with herpes simplex virus type 2. J Gen Virol, 84 (9):2497-2500.
        doi: 10.1099/vir.0.19251-0

    56. Malmgaard L, Melchjorsen J, Bowie A G, et al. 2004. Viral Activation of Macrophages through TLR-Dependent and -Independent Pathways. J Immunol, 173 (11):6890-6898.
        doi: 10.4049/jimmunol.173.11.6890

    57. Medzhitov R, Preston-Hurlburt P, Kopp E, et al. 1998. MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways. Mol Cell, 2 (2):253-258.
        doi: 10.1016/S1097-2765(00)80136-7

    58. Melchjorsen J, Siren J, Julkunen I, et al. 2006. Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-{kappa}B and IRF-3. J Gen Virol, 87 (5):1099-1108.
        doi: 10.1099/vir.0.81541-0

    59. Melroe G T, DeLuca N A, Knipe D M. 2004. Herpes Simplex Virus 1 Has Multiple Mechanisms for Blocking Virus-Induced Interferon Production. J Virol, 78 (16):8411-8420.
        doi: 10.1128/JVI.78.16.8411-8420.2004

    60. Melroe G T, Silva L, Schaffer P A, et al. 2007. Recruit-ment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-[beta] induction. Virology, 360 (2):305.
        doi: 10.1016/j.virol.2006.10.028

    61. Mercurio F, Zhu H, Murray B W, et al. 1997. IKK-1 and IKK-2: Cytokine-Activated Ⅰ{kappa}B Kinases Essential for NF-B Activation. Science, 278 (5339):860-866.
        doi: 10.1126/science.278.5339.860

    62. Meylan E, Curran J, Hofmann K, et al. 2005. Cardif is an adaptor protein in the RIG-Ⅰ antiviral pathway and is targeted by hepatitis C virus. Nature, 437 (7062):1167.
        doi: 10.1038/nature04193

    63. Mohr I, Sternberg D, Ward S, et al. 2001. A Herpes Simplex Virus Type 1 g134.5 Second-Site Suppressor Mutant That Exhibits Enhanced Growth in Cultured Glioblastoma Cells Is Severely Attenuated in Animals. J Virol, 75 (11):5189-5196.
        doi: 10.1128/JVI.75.11.5189-5196.2001

    64. Mohrl I, Gluzman Y. 1996. A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J, 15 (17):4759-4766.

    65. Mossman K L, Saffran H A, Smiley J R. 2000. Herpes Simplex Virus ICP0 Mutants Are Hypersensitive to Interferon. J Virol, 74 (4):2052-2056.
        doi: 10.1128/JVI.74.4.2052-2056.2000

    66. Mossman K L, Macgregor P F, Rozmus J J, et al. 2001. Herpes Simplex Virus Triggers and Then Disarms a Host Antiviral Response. J Virol, 75 (2):750-758.
        doi: 10.1128/JVI.75.2.750-758.2001

    67. Mossman K L, Ashkar A A. 2005. Herpesviruses and the Innate Immune Response.Viral Immunol, 18 (2):267-281.
        doi: 10.1089/vim.2005.18.267

    68. Murphy J A, Duerst R J, Smith T J, et al. 2003. Herpes Simplex Virus Type 2 Virion Host Shutoff Protein Regulates Alpha/Beta Interferon but Not Adaptive Immune Responses during Primary Infection In Vivo. J Virol, 77 (17):9337-9345.
        doi: 10.1128/JVI.77.17.9337-9345.2003

    69. Narita M, Ando Y, Soushi S, et al. 1998. The BglII-N fragment of herpes simplex virus type 2 contains a region responsible for resistance to antiviral effects of interferon. J Gen Virol, 79 (3):565-572.
        doi: 10.1099/0022-1317-79-3-565

    70. Nicholl M J, Robinson L H, Preston C M. 2000. Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1. J Gen Virol, 81 (9):2215-2218.
        doi: 10.1099/0022-1317-81-9-2215

    71. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. 1999. The kinase TAK1 can activate the NIK-Ⅰ[kappa]B as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 398 (6724):252.
        doi: 10.1038/18465

    72. Noyce R S, Collins S E, Mossman K L. 2006. Identification of a Novel Pathway Essential for the Immediate-Early, Interferon-Independent Antiviral Res-ponse to Enveloped Virions. J Virol, 80 (1):226-235.
        doi: 10.1128/JVI.80.1.226-235.2006

    73. Oganesyan G, Saha S K, Guo B, et al. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 439 (7073):208.
        doi: 10.1038/nature04374

    74. Okabe Y, Kawane K, Akira S, et al. 2005. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degra-dation. J Exp Med, 202 (10):1333-1339.
        doi: 10.1084/jem.20051654

    75. Oshiumi H, Matsumoto M, Funami K, et al. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-[beta] induction. Nat Immunol, 4 (2):161.
        doi: 10.1038/ni886

    76. Overton H, McMillan D, Hope L, et al. 1994. Production of Host Shutoff-Defective Mutants of Herpes Simplex Virus Type 1 by Inactivation of the UL13 Gene. Virology, 202 (1):97.
        doi: 10.1006/viro.1994.1326

    77. Paladino P, Cummings D T, Noyce R S, et al. 2006. The IFN-Independent Response to Virus Particle Entry Provides a First Line of Antiviral Defense That Is Independent of TLRs and Retinoic Acid-Inducible Gene Ⅰ. J Immunol, 177 (11):8008-8016.
        doi: 10.4049/jimmunol.177.11.8008

    78. Pasieka T J, Baas T, Carter V S, et al. 2006. Functional Genomic Analysis of Herpes Simplex Virus Type 1 Coun-teraction of the Host Innate Response. J Virol, 80 (15):7600-7612.
        doi: 10.1128/JVI.00333-06

    79. Pasieka T J, Lu B, Crosby S D, et al. 2008. Herpes Simplex Virus Virion Host Shutoff Attenuates Establish-ment of the Antiviral State. J Virol, 82 (11):5527-5535.
        doi: 10.1128/JVI.02047-07

    80. Pedersen E B, Haahr S, Mogensen S C. 1983. X-linked resistance of mice to high doses of herpes simplex virus type 2 correlates with early interferon production. Infect Immun, 42 (2):740-746.

    81. Perry A K, Chen G, Zheng D, et al. 2005. The host type Ⅰ interferon response to viral and bacterial infections. Cell Res, 15 (6):407.
        doi: 10.1038/sj.cr.7290309

    82. Pichlmair A, Schulz O, Tan C P, et al. 2006. RIG-Ⅰ-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5'-Phosphates. Science, 314 (5801):997-1001.
        doi: 10.1126/science.1132998

    83. Platanias L C. 2005. Mechanisms of type-Ⅰ-and type-Ⅱ-interferon-mediated signalling. Nat Rev Immunol, 5 (5):375.
        doi: 10.1038/nri1604

    84. Preston C M, Harman A N, Nicholl M J. 2001. Activation of Interferon Response Factor-3 in Human Cells Infected with Herpes Simplex Virus Type 1 or Human Cytomegalovirus. J Virol, 75 (19):8909-8916.
        doi: 10.1128/JVI.75.19.8909-8916.2001

    85. Rasmussen S B, Sorensen L N, Malmgaard L, et al. 2007. Type Ⅰ Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mito-chondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems. J Virol, 81 (24):13315-13324.
        doi: 10.1128/JVI.01167-07

    86. Reske A, Pollara G, Krummenacher C, et al. 2008. Glycoprotein-Dependent and TLR2-Independent Innate Immune Recognition of Herpes Simplex Virus-1 by Dendritic Cells. J Immunol, 180 (11):7525-7536.
        doi: 10.4049/jimmunol.180.11.7525

    87. Roizman B. 1999. HSV gene functions: what have we learned that could be generally applicable to its near and distant cousins? Acta Virol, 43 (2-3):75-80.

    88. Roizman B, Knipe D M. 2001. Herpes simplex viruses and their replication. In: Fields Virology (Knipe D M, Howley P, Griffin D, et al ed. ), 4th ed, vol. 2. Lippincott Williams & Wilkins, p 2399-2459.

    89. Rong Q, Alexander T S, Koski G K, et al. 2003. Multiple mechanisms for HSV-1 induction of interferon α produc-tion by peripheral blood mononuclear cells. Arch Virol, 148 (2):329.
        doi: 10.1007/s00705-002-0912-5

    90. Sato A, Linehan M M, Iwasaki A. 2006. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Scie USA, 103 (46):17343-17348.
        doi: 10.1073/pnas.0605102103

    91. Sato M, Suemori H, Hata N, et al. 2000. Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-[alpha]/[beta] Gene In-duction. Immunity, 13 (4):539.
        doi: 10.1016/S1074-7613(00)00053-4

    92. Sato M, Taniguchi T, Tanaka N. 2001. The interferon system and interferon regulatory factor transcription factors-studies from gene knockout mice. Cytokine & Growth Factor Rev, 12 (2-3):133.

    93. Sato S, Sugiyama M, Yamamoto M, et al. 2003. Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-{beta} (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-{kappa}B and IFN-Regulatory Factor-3, in the Toll-Like Receptor Signaling. J Immunol, 171 (8):4304-4310.
        doi: 10.4049/jimmunol.171.8.4304

    94. Seth R B, Sun L, Ea C K, et al. 2005. Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3. Cell, 122 (5):669-682.
        doi: 10.1016/j.cell.2005.08.012

    95. Sharma S, tenOever B R, Grandvaux N, et al. 2003. Triggering the Interferon Antiviral Response Through an IKK-Related Pathway. Science, 300 (5622):1148-1151.
        doi: 10.1126/science.1081315

    96. Shimada T, Kawai T, Takeda K, et al. 1999. IKK-i, a novel lipopolysaccharide-inducible kinase that is related to Ⅰ{kappa}B kinases. Int Immunol, 11 (8):1357-1362.
        doi: 10.1093/intimm/11.8.1357

    97. Shirota H, Ishii K J, Takakuwa H, et al. 2006. Contri-bution of interferon-β to the immune activation induced by double-stranded DNA. Immunology, 118 (3):302-310.
        doi: 10.1111/imm.2006.118.issue-3

    98. Smiley J R. 2004. Herpes Simplex Virus Virion Host Shutoff Protein: Immune Evasion Mediated by a Viral RNase? J Virol, 78 (3):1063-1068.
        doi: 10.1128/JVI.78.3.1063-1068.2004

    99. Stetson1 D B, Medzhitov R. 2006. Type Ⅰ Interferons in Host Defense. Immunity, 25 (3):373-381.
        doi: 10.1016/j.immuni.2006.08.007

    100. Stetson D B, Medzhitov R. 2006. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 24 (1):93-103.
        doi: 10.1016/j.immuni.2005.12.003

    101. Su Y H, Oakes J E, Lausch R N. 1993. Mapping the genetic region coding for herpes simplex virus resistance to mouse interferon {alpha}/beta. J Gen Virol, 74 (11):2325-2332.
        doi: 10.1099/0022-1317-74-11-2325

    102. Sun Q, Sun L, Liu H H, et al. 2006. The Specific and Essential Role of MAVS in Antiviral Innate Immune Responses. Immunity, 24 (5):633.
        doi: 10.1016/j.immuni.2006.04.004

    103. Suzutani T, Nagamine M, Shibaki T, et al. 2000. The role of the UL41 gene of herpes simplex virus type 1 invasion of non-specific host defence mechanisms during primary infection. J Gen Virol, 81 (7):1763-1771.
        doi: 10.1099/0022-1317-81-7-1763

    104. Takaoka A, Wang Z, Choi M K, et al. 2007. DAI (DLM -1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 448 (7152):501.
        doi: 10.1038/nature06013

    105. Takeda K, Akira S. 2004. TLR signaling pathways Semin Immunol, 16 (1): 3-9.

    106. Wang Z, Choi M K, Ban T, et al. 2008. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Scie USA, 105 (14):5477-5482.
        doi: 10.1073/pnas.0801295105

    107. Wathelet M G, Lin C H, Parekh B S, et al. 1998. Virus Infection Induces the Assembly of Coordinately Activated Transcription Factors on the IFN-[beta] Enhancer In Vivo. Mol Cell, 1 (4):507.
        doi: 10.1016/S1097-2765(00)80051-9

    108. Weber F, Wagner V, Rasmussen S B, et al. 2006. Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses. J Virol, 80 (10):5059-5064.
        doi: 10.1128/JVI.80.10.5059-5064.2006

    109. Xu L G, Wang Z, Han K J, et al. 2005. VISA Is an Adapter Protein Required for Virus-Triggered IFN-β Signaling. Mol Cell, 19 (6):727-740.
        doi: 10.1016/j.molcel.2005.08.014

    110. Yamamoto M, Sato S, Mori K, et al. 2002. Cutting Edge: A Novel Toll/IL-1 Receptor Domain-Containing Adapter That Preferentially Activates the IFN-{beta} Promoter in the Toll-Like Receptor Signaling. J Immunol, 169 (12):6668-6672.
        doi: 10.4049/jimmunol.169.12.6668

    111. Yang H, Lin C H, Ma G, et al. 2002. Transcriptional activity of interferon regulatory factor (IRF)-3 depends on multiple protein-protein interactions. Eur J Biochem, 269 (24):6142-6151.
        doi: 10.1046/j.1432-1033.2002.03330.x

    112. Yang K, Puel A, Zhang S, et al. 2005. Human TLR-7-, -8-, and -9-mediated induction of IFN-[alpha]/[beta] and -[lambda] is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity, 23 (5):465.
        doi: 10.1016/j.immuni.2005.09.016

    113. Yoneyama M, Suhara W, Fukuhara Y, et al. 1998. Direct triggering of the type Ⅰ interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J, 17 (4):1087-1095.
        doi: 10.1093/emboj/17.4.1087

    114. Yoneyama M, Kikuchi M, Natsukawa T, et al. 2004. The RNA helicase RIG-Ⅰ has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 5 (7):730.
        doi: 10.1038/ni1087

    115. Zandi E, Rothwarf D M, Delhase M, et al. 1997. The ⅠκB Kinase Complex (IKK) Contains Two Kinase Subunits, IKKα and IKKβ, Necessary for ⅠκB Phosphorylation and NF-κB Activation. cell, 91 (2):243-252.
        doi: 10.1016/S0092-8674(00)80406-7

    116. Zawatzky R, Kirchner H, DeMaeyer-Guignard J, et al. 1982. An X-linked Locus Influences the Amount of Circulating Interferon Induced in the Mouse by Herpes Simplex Virus Type 1. J Gen Virol, 63 (2):325-332.
        doi: 10.1099/0022-1317-63-2-325

    117. Zhang S Y, Jouanguy E, Sancho-Shimizu V, et al. 2007. Human Toll-like receptor-dependent induction of inter-ferons in protective immunity to viruses. Immunol Rev, 220 (1):225-236.
        doi: 10.1111/imr.2007.220.issue-1

    118. Zheng M, Klinman D M, Gierynska M, et al. 2002. DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Scie USA, 99 (13):8944-8949.
        doi: 10.1073/pnas.132605599

  • 加载中

Article Metrics

Article views(4944) PDF downloads(14) Cited by()

Related
Proportional views

    Herpes Simplex Viruses and Induction of Interferon Responses

      Corresponding author: Bin He, tshuo@uic.edu
    • Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA

    Abstract: Herpes simplex viruses (HSV) are human pathogens responsible for a variety of diseases, including localized mucocutaneous lesions, encephalitis, and disseminated diseases. HSV infection leads to rapid induction of innate immune responses. A critical part of this host response is the type I IFN system including the induction of type I IFNs, IFN-mediated signaling and amplification of IFN response. This provides the host with immediate countermeasure during acute infection to limit initial viral replication and to facilitate an appropriate adaptive immune response. However, HSV has devised multiple strategies to evade and interfere with innate immunity. This review will focus on the induction of type I IFN response by HSV during acute infection and current knowledge of mechanisms by which HSV interferes with this induction process.