-
Alexopoulou L, Holt A C, Medzhitov R, et al. 2001. Recognition of double-stranded RNA and activation of NF-[kappa]B by Toll-like receptor 3. Nature, 413 (6857):732.
doi: 10.1038/35099560
-
Ankel H, Westra D F, Welling-Wester S, et al. 1998. Induction of Interferon-[alpha] by Glycoprotein D of Herpes Simplex Virus: A Possible Role of Chemokine Receptors. Virology, 251 (2):317.
doi: 10.1006/viro.1998.9432
-
Aravalli R, Peterson P, Lokensgard J. 2007. Toll-like Receptors in Defense and Damage of the Central Nervous System. J Neuroimmune Pharmacol, 2 (4):297.
doi: 10.1007/s11481-007-9071-5
-
Au W, Moore P A, LaFleur D W, et al. 1998. Characterization of the Interferon Regulatory Factor-7 and Its Potential Role in the Transcription Activation of Interferon A Genes. J Biol Chem, 273 (44):29210-29217.
doi: 10.1074/jbc.273.44.29210
-
Au W, Moore P A, Lowther W, et al. 1995. Identification of a Member of the Interferon Regulatory Factor Family that Binds to the Interferon-Stimulated Response Element and Activates Expression of Interferon-Induced Genes. Proc Natl Acad Scie USA, 92 (25):11657-11661.
doi: 10.1073/pnas.92.25.11657
-
Bosnjak L, Jones C A, Abendroth A, et al. 2005. Dendritic Cell Biology in Herpesvirus Infections. Viral Immunol, 18 (3):419-433.
doi: 10.1089/vim.2005.18.419
-
Casrouge A, Zhang S Y, Eidenschenk C, et al. 2006. Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science, 314 (5797):308-312.
doi: 10.1126/science.1128346
-
Cassady K A, Gross M, Roizman B. 1998. The Second-Site Mutation in the Herpes Simplex Virus Recombinants Lacking the gamma 134.5 Genes Precludes Shutoff of Protein Synthesis by Blocking the Phosphory-lation of eIF-2alpha. J Virol, 72 (9):7005-7011.
-
Cassady K A, Gross M, Roizman B. 1998. The Herpes Simplex Virus Us11 Protein Effectively Compensates for the g134.5 Gene if Present before Activation of Protein Kinase R by Precluding Its Phosphorylation and That of the alpha subunit of Eukaryotic Translation Initiation Factor 2. J Virol, 72 (11):8620-8626.
-
Cerveny M, Hessefort S, Yang K, et al. 2003. Amino acid substitutions in the effector domain of the g134.5 protein of herpes simplex virus 1 have differential effects on viral response to interferon-a. Virology, 307 (2):290.
doi: 10.1016/S0042-6822(02)00075-2
-
Chee A V, Roizman B. 2004. Herpes Simplex Virus 1 Gene Products Occlude the Interferon Signaling Pathway at Multiple Sites. J Virol, 78 (8):4185-4196.
doi: 10.1128/JVI.78.8.4185-4196.2004
-
Cheng G, Brett M E, He B. 2001. Val193 and Phe195 of the g134.5 Protein of Herpes Simplex Virus 1 Are Required for Viral Resistance to Interferon-α/β. Virology, 290 (1):115.
doi: 10.1006/viro.2001.1148
-
Cheng G, Gross M, Brett M E, et al. 2001. AlaArg Motif in the Carboxyl Terminus of the g134.5 Protein of Herpes Simplex Virus Type 1 Is Required for the Formation of a High-Molecular-Weight Complex That Dephosphorylates eIF-2a. J Virol, 75 (8):3666-3674.
doi: 10.1128/JVI.75.8.3666-3674.2001
-
Cheng G, Yang K, He B. 2003. Dephosphorylation of eIF-2a Mediated by the g134.5 Protein of Herpes Simplex Virus Type 1 Is Required for Viral Response to Interferon but Is Not Sufficient for Efficient Viral Replication. J Virol, 77 (18):10154-10161.
doi: 10.1128/JVI.77.18.10154-10161.2003
-
Cheng G, Zhong J, Chung J, et al. 2007. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Scie USA, 104 (21):9035-9040.
doi: 10.1073/pnas.0703285104
-
Collins S E, Noyce R S, Mossman K L. 2004. Innate Cellular Response to Virus Particle Entry Requires IRF3 but Not Virus Replication. J Virol, 78 (4):1706-1717.
doi: 10.1128/JVI.78.4.1706-1717.2004
-
Diebold S S, Kaisho T, Hemmi H, et al. 2004. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science, 303 (5663):1529-1531.
doi: 10.1126/science.1093616
-
Duerst R J, Morrison L A. 2004. Herpes simplex virus 2 virion host shutoff protein interferes with type Ⅰ interferon production and responsiveness. Virology, 322 (1):158.
doi: 10.1016/j.virol.2004.01.019
-
Eidson K M, Hobbs W E, Manning B J, et al. 2002. Expression of Herpes Simplex Virus ICP0 Inhibits the Induction of Interferon-Stimulated Genes by Viral In-fection.J Virol, 76 (5):2180-2191.
doi: 10.1128/jvi.76.5.2180-2191.2002
-
Elain G, Romero P, Segal D, et al. 2007. TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 317 (5844): 1522-1527.
doi: 10.1126/science.1139522
-
Fitzgerald K A, McWhirter S M, Faia K L, et al. 2003. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4 (5):491.
doi: 10.1038/ni921
-
Garcia-Sastre A, Biron C A. 2006. Type 1 Interferons and the Virus-Host Relationship: A Lesson in Detente. Science, 312(5775):879-882.
doi: 10.1126/science.1125676
-
Garcia M A, Meurs E F, Esteban M. 2007. The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89 (6-7):799.
doi: 10.1016/j.biochi.2007.03.001
-
Gitlin L, Barchet W, Gilfillan S, et al. 2006. Essential role of mda-5 in type Ⅰ IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picor-navirus. Proc Natl Acad Scie USA, 103 (22):8459-8464.
doi: 10.1073/pnas.0603082103
-
Guo J, Peters K L, Sen G C. 2000. Induction of the Human Protein P56 by Interferon, Double-Stranded RNA, or Virus Infection. Virology, 267 (2):209.
doi: 10.1006/viro.1999.0135
-
Hacker H, Redecke V, Blagoev B, et al. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439 (7073):204.
doi: 10.1038/nature04369
-
He B, Chou J, Brandimarti R, et al. 1997. Suppression of the phenotype of g134.5- herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the α 47 gene. J Virol, 71 (8):6049-6054.
-
He B, Gross M, Roizman B. 1997. The g134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated pro-tein kinase. PNAS, 94 (3):843-848.
doi: 10.1073/pnas.94.3.843
-
Heil F, Hemmi H, Hochrein H, et al. 2004. Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science, 303 (5663):1526-1529.
doi: 10.1126/science.1093620
-
Hemmi H, Takeuchi O, Kawai T, et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature, 408 (6813):740.
doi: 10.1038/35047123
-
Herbst-Kralovetz M M, Pyles R B. 2006. Toll-like Receptors, Innate Immunity and HSV Pathogenesis. Herpes, 13 (2):37-41.
-
Hochrein H, Schlatter B, O'Keeffe M, et al. 2004. Herpes simplex virus type-1 induces IFN-{alpha} produc-tion via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Scie USA, 101 (31):11416-11421.
doi: 10.1073/pnas.0403555101
-
Hornung V, Ellegast J, Kim S, et al. 2006. 5'-Triphosp-hate RNA Is the Ligand for RIG-Ⅰ. Science, 314 (5801):994-997.
doi: 10.1126/science.1132505
-
Ishii K J, Akira S. 2006. Innate immune recognition of, and regulation by, DNA. Trends Immunol, 27 (11):525.
doi: 10.1016/j.it.2006.09.002
-
Ishii K J, Coban C, Kato H, et al. 2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol, 7 (1):40.
doi: 10.1038/ni1282
-
Ishii K J, Kawagoe T, Koyama S, et al. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature, 451 (7179):725.
doi: 10.1038/nature06537
-
Jacquemont B, Roizman B. 1975. RNA synthesis in cells infected with herpes simplex virus. X. Properties of viral symmetric transcripts and of double-stranded RNA prepared from them. J Virol, 15 (4):707-713.
-
Jiang Z, Mak T W, Sen G, et al. 2004. Toll-like receptor 3-mediated activation of NF-{kappa}B and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-{beta}. Proc Natl Acad Scie USA, 101 (10):3533-3538.
doi: 10.1073/pnas.0308496101
-
Johnson K E, Song B, Knipe D M. 2008. Role for herpes simplex virus 1 ICP27 in the inhibition of type Ⅰ interferon signaling. Virology, 374 (2):487.
doi: 10.1016/j.virol.2008.01.001
-
Kato H, Takeuchi O, Sato S, et al. 2006. Differential roles of MDA5 and RIG-Ⅰ helicases in the recognition of RNA viruses. Nature, 441 (7089):101.
doi: 10.1038/nature04734
-
Kawai T, Takahashi K, Sato S, et al. 2005. IPS-1, an adaptor triggering RIG-Ⅰ-and Mda5-mediated type Ⅰ in-terferon induction. Nat Immunol, 6 (10):981.
doi: 10.1038/ni1243
-
Kawai T, Akira S. 2006. Innate immune recognition of viral infection. Nat Immunol, 7 (2):131.
doi: 10.1038/ni1303
-
Kim J C, Lee S Y, Kim S Y, et al. 2008. HSV-1 ICP27 suppresses NF-[kappa]B activity by stabilizing Ⅰ[kappa]B [alpha]. FEBS Letters, 582 (16):2371.
doi: 10.1016/j.febslet.2008.05.044
-
Konat G W, Kielian T, Marriott I. 2006. The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem, 99 (1):1-12.
doi: 10.1111/jnc.2006.99.issue-1
-
Korom M, Wylie K M, Morrison L A. 2008. Selective Ablation of Virion Host Shutoff Protein RNase Activity Attenuates Herpes Simplex Virus 2 in Mice. J Virol, 82 (7):3642-3653.
doi: 10.1128/JVI.02409-07
-
Krug A, Luker G D, Barchet W, et al. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood, 103 (4):1433-1437.
-
Ku C L, von Bernuth H, Picard C, et al. 2007. Selective predisposition to bacterial infections in IRAK-4 deficient children: IRAK-4 dependent TLRs are otherwise redundant in protective immunity. J Exp Med, 204 (10):2407-2422.
doi: 10.1084/jem.20070628
-
Kumar-Sinha C, Varambally S, Sreekumar A, et al. 2002. Molecular Cross-talk between the TRAIL and Interferon Signaling Pathways. J Biol Chem, 277 (1):575-585.
doi: 10.1074/jbc.M107795200
-
Kumar H, Zheng M, Atherton S S, et al. 2006. Herpes simplex virus 1 infection induces the expression of proin-flammatory cytokines, interferons and TLR7 in human corneal epithelial cells. Immunology, 117 (2):167-176.
doi: 10.1111/imm.2006.117.issue-2
-
Kurt-Jones E A, Chan M, Zhou S, et al. 2004. Herpes simplex virus 1 interaction with Toll-like receptor 2 contri-butes to lethal encephalitis. Proc Natl Acad Scie USA, 101 (5):1315-1320.
doi: 10.1073/pnas.0308057100
-
Lebon P. 1985. Inhibition of Herpes Simplex Virus Type 1-induced Interferon Synthesis by Monoclonal Antibodies against Viral Glycoprotein D and by Lysosomotropic Drugs.J Gen Virol, 66 (12):2781-2786.
doi: 10.1099/0022-1317-66-12-2781
-
Leib D A, Harrison T E, Laslo K M, et al. 1999. Interferons Regulate the Phenotype of Wild-type and Mutant Herpes Simplex Viruses In Vivo. J Exp Med, 189 (4):663-672.
doi: 10.1084/jem.189.4.663
-
Lin R, Noyce R S, Collins S E, et al. 2004. The Herpes Simplex Virus ICP0 RING Finger Domain Inhibits IRF3-and IRF7-Mediated Activation of Interferon-Stimulated Genes. J Virol, 78 (4):1675-1684.
doi: 10.1128/JVI.78.4.1675-1684.2004
-
Lund J, Sato A, Akira S, et al. 2003. Toll-like Receptor 9-mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. J Exp Med, 198 (3):513-520.
doi: 10.1084/jem.20030162
-
Malmgaard L, Paludan S. R. 2003. Interferon (IFN)-{alpha}/{beta}, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-{gamma} during infection with herpes simplex virus type 2. J Gen Virol, 84 (9):2497-2500.
doi: 10.1099/vir.0.19251-0
-
Malmgaard L, Melchjorsen J, Bowie A G, et al. 2004. Viral Activation of Macrophages through TLR-Dependent and -Independent Pathways. J Immunol, 173 (11):6890-6898.
doi: 10.4049/jimmunol.173.11.6890
-
Medzhitov R, Preston-Hurlburt P, Kopp E, et al. 1998. MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways. Mol Cell, 2 (2):253-258.
doi: 10.1016/S1097-2765(00)80136-7
-
Melchjorsen J, Siren J, Julkunen I, et al. 2006. Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-{kappa}B and IRF-3. J Gen Virol, 87 (5):1099-1108.
doi: 10.1099/vir.0.81541-0
-
Melroe G T, DeLuca N A, Knipe D M. 2004. Herpes Simplex Virus 1 Has Multiple Mechanisms for Blocking Virus-Induced Interferon Production. J Virol, 78 (16):8411-8420.
doi: 10.1128/JVI.78.16.8411-8420.2004
-
Melroe G T, Silva L, Schaffer P A, et al. 2007. Recruit-ment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-[beta] induction. Virology, 360 (2):305.
doi: 10.1016/j.virol.2006.10.028
-
Mercurio F, Zhu H, Murray B W, et al. 1997. IKK-1 and IKK-2: Cytokine-Activated Ⅰ{kappa}B Kinases Essential for NF-B Activation. Science, 278 (5339):860-866.
doi: 10.1126/science.278.5339.860
-
Meylan E, Curran J, Hofmann K, et al. 2005. Cardif is an adaptor protein in the RIG-Ⅰ antiviral pathway and is targeted by hepatitis C virus. Nature, 437 (7062):1167.
doi: 10.1038/nature04193
-
Mohr I, Sternberg D, Ward S, et al. 2001. A Herpes Simplex Virus Type 1 g134.5 Second-Site Suppressor Mutant That Exhibits Enhanced Growth in Cultured Glioblastoma Cells Is Severely Attenuated in Animals. J Virol, 75 (11):5189-5196.
doi: 10.1128/JVI.75.11.5189-5196.2001
-
Mohrl I, Gluzman Y. 1996. A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J, 15 (17):4759-4766.
-
Mossman K L, Saffran H A, Smiley J R. 2000. Herpes Simplex Virus ICP0 Mutants Are Hypersensitive to Interferon. J Virol, 74 (4):2052-2056.
doi: 10.1128/JVI.74.4.2052-2056.2000
-
Mossman K L, Macgregor P F, Rozmus J J, et al. 2001. Herpes Simplex Virus Triggers and Then Disarms a Host Antiviral Response. J Virol, 75 (2):750-758.
doi: 10.1128/JVI.75.2.750-758.2001
-
Mossman K L, Ashkar A A. 2005. Herpesviruses and the Innate Immune Response.Viral Immunol, 18 (2):267-281.
doi: 10.1089/vim.2005.18.267
-
Murphy J A, Duerst R J, Smith T J, et al. 2003. Herpes Simplex Virus Type 2 Virion Host Shutoff Protein Regulates Alpha/Beta Interferon but Not Adaptive Immune Responses during Primary Infection In Vivo. J Virol, 77 (17):9337-9345.
doi: 10.1128/JVI.77.17.9337-9345.2003
-
Narita M, Ando Y, Soushi S, et al. 1998. The BglII-N fragment of herpes simplex virus type 2 contains a region responsible for resistance to antiviral effects of interferon. J Gen Virol, 79 (3):565-572.
doi: 10.1099/0022-1317-79-3-565
-
Nicholl M J, Robinson L H, Preston C M. 2000. Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1. J Gen Virol, 81 (9):2215-2218.
doi: 10.1099/0022-1317-81-9-2215
-
Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. 1999. The kinase TAK1 can activate the NIK-Ⅰ[kappa]B as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 398 (6724):252.
doi: 10.1038/18465
-
Noyce R S, Collins S E, Mossman K L. 2006. Identification of a Novel Pathway Essential for the Immediate-Early, Interferon-Independent Antiviral Res-ponse to Enveloped Virions. J Virol, 80 (1):226-235.
doi: 10.1128/JVI.80.1.226-235.2006
-
Oganesyan G, Saha S K, Guo B, et al. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 439 (7073):208.
doi: 10.1038/nature04374
-
Okabe Y, Kawane K, Akira S, et al. 2005. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degra-dation. J Exp Med, 202 (10):1333-1339.
doi: 10.1084/jem.20051654
-
Oshiumi H, Matsumoto M, Funami K, et al. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-[beta] induction. Nat Immunol, 4 (2):161.
doi: 10.1038/ni886
-
Overton H, McMillan D, Hope L, et al. 1994. Production of Host Shutoff-Defective Mutants of Herpes Simplex Virus Type 1 by Inactivation of the UL13 Gene. Virology, 202 (1):97.
doi: 10.1006/viro.1994.1326
-
Paladino P, Cummings D T, Noyce R S, et al. 2006. The IFN-Independent Response to Virus Particle Entry Provides a First Line of Antiviral Defense That Is Independent of TLRs and Retinoic Acid-Inducible Gene Ⅰ. J Immunol, 177 (11):8008-8016.
doi: 10.4049/jimmunol.177.11.8008
-
Pasieka T J, Baas T, Carter V S, et al. 2006. Functional Genomic Analysis of Herpes Simplex Virus Type 1 Coun-teraction of the Host Innate Response. J Virol, 80 (15):7600-7612.
doi: 10.1128/JVI.00333-06
-
Pasieka T J, Lu B, Crosby S D, et al. 2008. Herpes Simplex Virus Virion Host Shutoff Attenuates Establish-ment of the Antiviral State. J Virol, 82 (11):5527-5535.
doi: 10.1128/JVI.02047-07
-
Pedersen E B, Haahr S, Mogensen S C. 1983. X-linked resistance of mice to high doses of herpes simplex virus type 2 correlates with early interferon production. Infect Immun, 42 (2):740-746.
-
Perry A K, Chen G, Zheng D, et al. 2005. The host type Ⅰ interferon response to viral and bacterial infections. Cell Res, 15 (6):407.
doi: 10.1038/sj.cr.7290309
-
Pichlmair A, Schulz O, Tan C P, et al. 2006. RIG-Ⅰ-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5'-Phosphates. Science, 314 (5801):997-1001.
doi: 10.1126/science.1132998
-
Platanias L C. 2005. Mechanisms of type-Ⅰ-and type-Ⅱ-interferon-mediated signalling. Nat Rev Immunol, 5 (5):375.
doi: 10.1038/nri1604
-
Preston C M, Harman A N, Nicholl M J. 2001. Activation of Interferon Response Factor-3 in Human Cells Infected with Herpes Simplex Virus Type 1 or Human Cytomegalovirus. J Virol, 75 (19):8909-8916.
doi: 10.1128/JVI.75.19.8909-8916.2001
-
Rasmussen S B, Sorensen L N, Malmgaard L, et al. 2007. Type Ⅰ Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mito-chondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems. J Virol, 81 (24):13315-13324.
doi: 10.1128/JVI.01167-07
-
Reske A, Pollara G, Krummenacher C, et al. 2008. Glycoprotein-Dependent and TLR2-Independent Innate Immune Recognition of Herpes Simplex Virus-1 by Dendritic Cells. J Immunol, 180 (11):7525-7536.
doi: 10.4049/jimmunol.180.11.7525
-
Roizman B. 1999. HSV gene functions: what have we learned that could be generally applicable to its near and distant cousins? Acta Virol, 43 (2-3):75-80.
-
Roizman B, Knipe D M. 2001. Herpes simplex viruses and their replication. In: Fields Virology (Knipe D M, Howley P, Griffin D, et al ed. ), 4th ed, vol. 2. Lippincott Williams & Wilkins, p 2399-2459.
-
Rong Q, Alexander T S, Koski G K, et al. 2003. Multiple mechanisms for HSV-1 induction of interferon α produc-tion by peripheral blood mononuclear cells. Arch Virol, 148 (2):329.
doi: 10.1007/s00705-002-0912-5
-
Sato A, Linehan M M, Iwasaki A. 2006. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Scie USA, 103 (46):17343-17348.
doi: 10.1073/pnas.0605102103
-
Sato M, Suemori H, Hata N, et al. 2000. Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-[alpha]/[beta] Gene In-duction. Immunity, 13 (4):539.
doi: 10.1016/S1074-7613(00)00053-4
-
Sato M, Taniguchi T, Tanaka N. 2001. The interferon system and interferon regulatory factor transcription factors-studies from gene knockout mice. Cytokine & Growth Factor Rev, 12 (2-3):133.
-
Sato S, Sugiyama M, Yamamoto M, et al. 2003. Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-{beta} (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-{kappa}B and IFN-Regulatory Factor-3, in the Toll-Like Receptor Signaling. J Immunol, 171 (8):4304-4310.
doi: 10.4049/jimmunol.171.8.4304
-
Seth R B, Sun L, Ea C K, et al. 2005. Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3. Cell, 122 (5):669-682.
doi: 10.1016/j.cell.2005.08.012
-
Sharma S, tenOever B R, Grandvaux N, et al. 2003. Triggering the Interferon Antiviral Response Through an IKK-Related Pathway. Science, 300 (5622):1148-1151.
doi: 10.1126/science.1081315
-
Shimada T, Kawai T, Takeda K, et al. 1999. IKK-i, a novel lipopolysaccharide-inducible kinase that is related to Ⅰ{kappa}B kinases. Int Immunol, 11 (8):1357-1362.
doi: 10.1093/intimm/11.8.1357
-
Shirota H, Ishii K J, Takakuwa H, et al. 2006. Contri-bution of interferon-β to the immune activation induced by double-stranded DNA. Immunology, 118 (3):302-310.
doi: 10.1111/imm.2006.118.issue-3
-
Smiley J R. 2004. Herpes Simplex Virus Virion Host Shutoff Protein: Immune Evasion Mediated by a Viral RNase? J Virol, 78 (3):1063-1068.
doi: 10.1128/JVI.78.3.1063-1068.2004
-
Stetson1 D B, Medzhitov R. 2006. Type Ⅰ Interferons in Host Defense. Immunity, 25 (3):373-381.
doi: 10.1016/j.immuni.2006.08.007
-
Stetson D B, Medzhitov R. 2006. Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 24 (1):93-103.
doi: 10.1016/j.immuni.2005.12.003
-
Su Y H, Oakes J E, Lausch R N. 1993. Mapping the genetic region coding for herpes simplex virus resistance to mouse interferon {alpha}/beta. J Gen Virol, 74 (11):2325-2332.
doi: 10.1099/0022-1317-74-11-2325
-
Sun Q, Sun L, Liu H H, et al. 2006. The Specific and Essential Role of MAVS in Antiviral Innate Immune Responses. Immunity, 24 (5):633.
doi: 10.1016/j.immuni.2006.04.004
-
Suzutani T, Nagamine M, Shibaki T, et al. 2000. The role of the UL41 gene of herpes simplex virus type 1 invasion of non-specific host defence mechanisms during primary infection. J Gen Virol, 81 (7):1763-1771.
doi: 10.1099/0022-1317-81-7-1763
-
Takaoka A, Wang Z, Choi M K, et al. 2007. DAI (DLM -1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 448 (7152):501.
doi: 10.1038/nature06013
-
Takeda K, Akira S. 2004. TLR signaling pathways Semin Immunol, 16 (1): 3-9.
-
Wang Z, Choi M K, Ban T, et al. 2008. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Scie USA, 105 (14):5477-5482.
doi: 10.1073/pnas.0801295105
-
Wathelet M G, Lin C H, Parekh B S, et al. 1998. Virus Infection Induces the Assembly of Coordinately Activated Transcription Factors on the IFN-[beta] Enhancer In Vivo. Mol Cell, 1 (4):507.
doi: 10.1016/S1097-2765(00)80051-9
-
Weber F, Wagner V, Rasmussen S B, et al. 2006. Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses. J Virol, 80 (10):5059-5064.
doi: 10.1128/JVI.80.10.5059-5064.2006
-
Xu L G, Wang Z, Han K J, et al. 2005. VISA Is an Adapter Protein Required for Virus-Triggered IFN-β Signaling. Mol Cell, 19 (6):727-740.
doi: 10.1016/j.molcel.2005.08.014
-
Yamamoto M, Sato S, Mori K, et al. 2002. Cutting Edge: A Novel Toll/IL-1 Receptor Domain-Containing Adapter That Preferentially Activates the IFN-{beta} Promoter in the Toll-Like Receptor Signaling. J Immunol, 169 (12):6668-6672.
doi: 10.4049/jimmunol.169.12.6668
-
Yang H, Lin C H, Ma G, et al. 2002. Transcriptional activity of interferon regulatory factor (IRF)-3 depends on multiple protein-protein interactions. Eur J Biochem, 269 (24):6142-6151.
doi: 10.1046/j.1432-1033.2002.03330.x
-
Yang K, Puel A, Zhang S, et al. 2005. Human TLR-7-, -8-, and -9-mediated induction of IFN-[alpha]/[beta] and -[lambda] is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity, 23 (5):465.
doi: 10.1016/j.immuni.2005.09.016
-
Yoneyama M, Suhara W, Fukuhara Y, et al. 1998. Direct triggering of the type Ⅰ interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J, 17 (4):1087-1095.
doi: 10.1093/emboj/17.4.1087
-
Yoneyama M, Kikuchi M, Natsukawa T, et al. 2004. The RNA helicase RIG-Ⅰ has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 5 (7):730.
doi: 10.1038/ni1087
-
Zandi E, Rothwarf D M, Delhase M, et al. 1997. The ⅠκB Kinase Complex (IKK) Contains Two Kinase Subunits, IKKα and IKKβ, Necessary for ⅠκB Phosphorylation and NF-κB Activation. cell, 91 (2):243-252.
doi: 10.1016/S0092-8674(00)80406-7
-
Zawatzky R, Kirchner H, DeMaeyer-Guignard J, et al. 1982. An X-linked Locus Influences the Amount of Circulating Interferon Induced in the Mouse by Herpes Simplex Virus Type 1. J Gen Virol, 63 (2):325-332.
doi: 10.1099/0022-1317-63-2-325
-
Zhang S Y, Jouanguy E, Sancho-Shimizu V, et al. 2007. Human Toll-like receptor-dependent induction of inter-ferons in protective immunity to viruses. Immunol Rev, 220 (1):225-236.
doi: 10.1111/imr.2007.220.issue-1
-
Zheng M, Klinman D M, Gierynska M, et al. 2002. DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Scie USA, 99 (13):8944-8949.
doi: 10.1073/pnas.132605599