For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Jingjing Fan, Yi Liu, Xie Xuping, Bo Zhang, Zhiming Yuan. Inhibition of Japanese Encephalitis Virus Infection by Flavivirus Recombinant E Protein Domain Ⅲ [J].VIROLOGICA SINICA, 2013, 28(3) : 152-160.  http://dx.doi.org/10.1007/s12250-013-3331-8

Inhibition of Japanese Encephalitis Virus Infection by Flavivirus Recombinant E Protein Domain Ⅲ

  • Corresponding author: Zhiming Yuan, yzm@wh.iov.cn
  • Received Date: 02 April 2013
    Accepted Date: 07 May 2013
    Available online: 01 June 2013
  • Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus closely related to the human pathogens including yellow fever virus, dengue virus and West Nile virus. There are currently no effective antiviral therapies for all of the flavivirus and only a few highly effective vaccines are licensed for human use. In this paper, the E protein domain III (DIII) of six heterologous flaviviruses (DENV1-4, WNV and JEV) was expressed in Escherichia coli successfully. The proteins were purified after a solubilization and refolding procedure, characterized by SDS-PAGE and Western blotting. Competitive inhibition showed that all recombinant flavivirus DIII proteins blocked the entry of JEV into BHK-21 cells. Further studies indicated that antibodies induced by the soluble recombinant flavivirus DIII partially protected mice against lethal JEV challenge. These results demonstrated that recombinant flavivirus DIII proteins could inhibit JEV infection competitively, and immunization with proper folding flavivirus DIII induced cross-protection against JEV infection in mice, implying a possible role of DIII for the cross-protection among flavivirus as well as its use in antigens for immunization in animal models.

  • 加载中
    1. Appaiahgari M B, and Vrati S. 2010. IMOJEV (R): a Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Review of Vaccines, 9: 1371-1384.
        doi: 10.1586/erv.10.139

    2. Calisher C H, Karabatsos N, Dalrymple J M, Shope R E, Porterfield J S, Westaway E G, and Brandt W E. 1989. Antigenic Relationships between Flaviviruses as Determined by Cross-Neutralization Tests with Polyclonal Antisera. Journal of General Virology, 70: 37-43.
        doi: 10.1099/0022-1317-70-1-37

    3. Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, et al. 2011. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89: 766-774, 774A-774E.
        doi: 10.2471/BLT.00.000000

    4. Chavez J H, Silva J R, Amarilla A A, and Moraes Figueiredo L T. 2010. Domain Ⅲ peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals, 38: 613-618.
        doi: 10.1016/j.biologicals.2010.07.004

    5. Chien Y J, Chen W J, Hsu W L, and Chiou S S. 2008. Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein. Virology, 379: 143-151.
        doi: 10.1016/j.virol.2008.06.017

    6. Chow L, Sun H C, Chen H Y, Lin S Y, and Wu J S. 1992. Detection and differentiation of dengue-1 from Japanese encephalitis virus infections by ABC MAC-ELISA. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 25: 172-180.

    7. Chu J H, Chiang C C, and Ng M L. 2007. Immunization of flavivirus West Nile recombinant envelope domain Ⅲ protein induced specific immune response and protection against West Nile virus infection. J Immunol, 178: 2699-2705.
        doi: 10.4049/jimmunol.178.5.2699

    8. Chu J J H, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, and Ng M L. 2005. Inhibition of West Nile virus entry by using a recombinant domain Ⅲ from the envelope glycoprotein. Journal of General Virology, 86: 405-412.
        doi: 10.1099/vir.0.80411-0

    9. Crill W D, and Roehrig J T. 2001. Monoclonal antibodies that bind to domain Ⅲ of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. Journal of Virology, 75: 7769-7773.
        doi: 10.1128/JVI.75.16.7769-7773.2001

    10. Dou J L, Jing T, Fan JJ, Yuan ZM. 2011. Surface display of domain Ⅲ of Japanese encephalitis virus E protein on Salmonella typhimurium by using an ice nucleation protein. Virol Sin, 26:409-417.
        doi: 10.1007/s12250-011-3216-7

    11. Eder S, Dubischar-Kastner K, Firbas C, Jelinek T, Jilma B, Kaltenboeck A, Knappik M, Kollaritsch H, Kundi M, Paulke-Korinek M, Schuller E, and Klade C S. 2011. Long term immunity following a booster dose of the inactivated Japanese Encephalitis vaccine IXIARO (R), IC51. Vaccine, 29: 2607-2612.
        doi: 10.1016/j.vaccine.2011.01.058

    12. Ghosh D, and Basu A. 2009. Japanese Encephalitis — A Pathological and Clinical Perspective. Plos Neglected Tropical Diseases, 3.

    13. Heinz F X, Stiasny K, Puschnerauer G, Holzmann H, Allison S L, Mandl C W, and Kunz C. 1994. Structural-Changes and Functional Control of the Tick-Borne Encephalitis-Virus Glycoprotein-E by the Heterodimeric Association with Protein Prm. Virology, 198: 109-117.
        doi: 10.1006/viro.1994.1013

    14. Hennessy S, Liu Z L, Tsai T F, Strom B L, Wan C M, Liu H L, Wu T X, Yu H J, Liu Q M, Karabatsos N, Bilker W B, and Halstead S B. 1996. Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): A case-control study. Lancet, 347: 1583-1586.
        doi: 10.1016/S0140-6736(96)91075-2

    15. Hoke C H, Nisalak A, Sangawhipa N, Jatanasen S, Laorakapongse T, Innis B L, Kotchasenee S O, Gingrich J B, Latendresse J, Fukai K, and Burke D S. 1988. Protection against Japanese Encephalitis by Inactivated Vaccines. New England Journal of Medicine, 319: 608-614.
        doi: 10.1056/NEJM198809083191004

    16. Jones C T, Ma L, Burgner J W, Groesch T D, Post C B, and Kuhn R J. 2003. Flavivirus capsid is a dimeric alpha-helical protein. J Virol, 77: 7143-7149.
        doi: 10.1128/JVI.77.12.7143-7149.2003

    17. Kanai R, Kar K, Anthony K, Gould L H, Ledizet M, Fikrig E, Marasco W A, Koski R A, and Modis Y. 2006. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol, 80: 11000-11008.
        doi: 10.1128/JVI.01735-06

    18. Konno J, Endo K, Agatsuma H, and Ishida N. 1966. Cyclic Outbreaks of Japanese Encephalitis among Pigs and Humans. American Journal of Epidemiology, 84: 292- & .
        doi: 10.1093/oxfordjournals.aje.a120643

    19. Kuhn R J, Zhang W, Rossmann M G, Pletnev S V, Corver J, Lenches E, Jones C T, Mukhopadhyay S, Chipman P R, Strauss E G, Baker T S, and Strauss J H. 2002. Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell, 108: 717-725.
        doi: 10.1016/S0092-8674(02)00660-8

    20. Li S H, Li X F, Zhao H, Jiang T, Deng Y Q, Yu X D, Zhu Q Y, Qin E D, and Qin C F. 2011. Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain Ⅲ of Japanese encephalitis virus. Immunol Lett, 138: 156-160.
        doi: 10.1016/j.imlet.2011.04.003

    21. Lindenbach B D, H. J. Thiel, and C. M. Rice. 2007. Flaviviridae: the virus and their replication. In Howley D M K a P M (ed. ), Fields virology, 5th ed, vol. 1, Lippincott-Raven, Philadelphia, Pa.

    22. Lozach P Y, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier J L, Rey F A, Despres P, Arenzana-Seisdedos F, and Amara A. 2005. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem, 280: 23698-23708.
        doi: 10.1074/jbc.M504337200

    23. Luca V C, AbiMansour J, Nelson C A, and Fremont D H. 2012. Crystal structure of the Japanese encephalitis virus envelope protein. J Virol, 86: 2337-2346.
        doi: 10.1128/JVI.06072-11

    24. Miller J L, de Wet B J, Martinez-Pomares L, Radcliffe C M, Dwek R A, Rudd P M, and Gordon S. 2008. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog, 4: e17.
        doi: 10.1371/journal.ppat.0040017

    25. Modis Y, Ogata S, Clements D, and Harrison S C. 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A, 100: 6986-6991.
        doi: 10.1073/pnas.0832193100

    26. Nothdurft H D, Jelinek T, Marschang A, Maiwald H, Kapaun A, and Loscher T. 1996. Adverse reactions to Japanese encephalitis vaccine in travellers. J Infect, 32: 119-122.
        doi: 10.1016/S0163-4453(96)91281-5

    27. Nybakken G E, Oliphant T, Johnson S, Burke S, Diamond M S, and Fremont D H. 2005. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature, 437: 764-769.
        doi: 10.1038/nature03956

    28. Plesner A M, P. Arlien-Soborg, and M. Herning. 1998. Neurological complications to vaccination against Japanese encephalitis. the official journal of the European Federation of Neurological Societies, 5: 479-485.
        doi: 10.1046/j.1468-1331.1998.550479.x

    29. Rajamanonmani R, Nkenfou C, Clancy P, Yau Y H, Shochat S G, Sukupolvi-Petty S, Schul W, Diamond M S, Vasudevan S G, and Lescar J. 2009. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. Journal of General Virology, 90: 799-809.
        doi: 10.1099/vir.0.006874-0

    30. Rey F A, Heinz F X, Mandl C, Kunz C, and Harrison S C. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature, 375: 291-298.
        doi: 10.1038/375291a0

    31. Schioler K L, Samuel M, and Wai K L. 2007. Vaccines for preventing Japanese encephalitis. Cochrane Database Syst Rev: CD004263.

    32. Song B H, Yun G N, Kim J K, Yun S I, and Lee Y M. 2012. Biological and genetic properties of SA(14)-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. Journal of Microbiology, 50: 698-706.
        doi: 10.1007/s12275-012-2336-6

    33. Tesh R B, da Rosa A P A T, Guzman H, Araujo T P, and Xiao S Y. 2002. Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerging Infectious Diseases, 8: 245-251.
        doi: 10.3201/eid0803.010238

    34. Wu K P, Wu C W, Tsao Y P, Kuo T W, Lou Y C, Lin C W, Wu S C, and Cheng J W. 2003. Structural basis of a flavivirus recognized by its neutralizing antibody — Solution structure of the domain Ⅲ of the Japanese encephalitis virus envelope protein. Journal of Biological Chemistry, 278: 46007-46013.
        doi: 10.1074/jbc.M307776200

    35. Yu I M, Zhang W, Holdaway H A, Li L, Kostyuchenko V A, Chipman P R, Kuhn R J, Rossmann M G, and Chen J. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319: 1834-1837.
        doi: 10.1126/science.1153264

    36. Zaitseva E, Yang S T, Melikov K, Pourmal S, and Chernomordik L V. 2010. Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog, 6.

  • 加载中

Figures(7) / Tables(2)

Article Metrics

Article views(4454) PDF downloads(4) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Inhibition of Japanese Encephalitis Virus Infection by Flavivirus Recombinant E Protein Domain Ⅲ

      Corresponding author: Zhiming Yuan, yzm@wh.iov.cn
    • Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

    Abstract: Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus closely related to the human pathogens including yellow fever virus, dengue virus and West Nile virus. There are currently no effective antiviral therapies for all of the flavivirus and only a few highly effective vaccines are licensed for human use. In this paper, the E protein domain III (DIII) of six heterologous flaviviruses (DENV1-4, WNV and JEV) was expressed in Escherichia coli successfully. The proteins were purified after a solubilization and refolding procedure, characterized by SDS-PAGE and Western blotting. Competitive inhibition showed that all recombinant flavivirus DIII proteins blocked the entry of JEV into BHK-21 cells. Further studies indicated that antibodies induced by the soluble recombinant flavivirus DIII partially protected mice against lethal JEV challenge. These results demonstrated that recombinant flavivirus DIII proteins could inhibit JEV infection competitively, and immunization with proper folding flavivirus DIII induced cross-protection against JEV infection in mice, implying a possible role of DIII for the cross-protection among flavivirus as well as its use in antigens for immunization in animal models.