Citation: Huiping Bi, Peng Zhang. Agroinfection of sweet potato by vacuum infiltration of an infectious sweepovirus .VIROLOGICA SINICA, 2014, 29(3) : 148-154.  http://dx.doi.org/10.1007/s12250-014-3430-1

Agroinfection of sweet potato by vacuum infiltration of an infectious sweepovirus

  • Corresponding author: Peng Zhang, zhangpeng@sibs.ac.cn
  • Received Date: 03 January 2014
    Accepted Date: 04 May 2014
    Published Date: 14 May 2014
    Available online: 01 June 2014
  • Sweepovirus is an important monopartite begomovirus that infects plants of the genus Ipomoea worldwide. Development of artificial infection methods for sweepovirus using agroinoculation is a highly efficient means of studying infectivity in sweet potato. Unlike other begomoviruses, it has proven difficult to infect sweet potato plants with sweepoviruses using infectious clones. A novel sweepovirus, called Sweet potato leaf curl virus-Jiangsu (SPLCV-JS), was recently identified in China. In addition, the infectivity of the SPLCV-JS clone has been demonstrated in Nicotiana benthamiana. Here we describe the agroinfection of the sweet potato cultivar Xushu 22 with the SPLCV-JS infectious clone using vacuum infiltration. Yellowing symptoms were observed in newly emerged leaves. Molecular analysis confirmed successful inoculation by the detection of viral DNA. A synergistic effect of SPLCV-JS and the heterologous betasatellite DNA-β of Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10) on enhanced symptom severity and viral DNA accumulation was confirmed. The development of a routine agroinoculation system in sweet potato with SPLCV-JS using vacuum infiltration should facilitate the molecular study of sweepovirus in this host and permit the evaluation of virus resistance of sweet potato plants in breeding programs.

  • 加载中
    1. Albuquerque L C, Inoue-Nagata A K, Pinheiro B, Resende R O, Moriones E, Navas-Castillo J. 2012. Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virol J, 9: 241-253.
        doi: 10.1186/1743-422X-9-241

    2. Bi H, Zhang P. 2012. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana. Arch Virol, 157: 441-454.
        doi: 10.1007/s00705-011-1194-6

    3. Boulton M I. 1996. Agrobacterium-mediated transfer of geminiviruses to plant tissues. In: Plant Gene Transfer and Expression Protocols. Springer, New York, pp77-93.

    4. Briddon R W, Bull S E, Mansoor S, Amin I, Markham P G. 2002.Universal primers for the PCR-mediated amplifi cation of DNAβ: a molecule associated with some monopartite begomoviruses. Mol Biotechnol, 20: 315-318.
        doi: 10.1385/MB:20:3:315

    5. Briddon R W, Bull S E, Bedford I D. 2006. Occurrence of sweet potato leaf curl virus in Sicily. Plant Pathol, 55: 286.

    6. Carrillo-Tripp J, Shimada-Beltrán H, Rivera-Bustamante R. 2006.Use of geminiviral vectors for functional genomics. Curr OpinPlant Biol, 9: 209-215.
        doi: 10.1016/j.pbi.2006.01.012

    7. Clark C A, Hoy M W. 2006. Effects of common viruses on yield and quality of Beauregard sweetpotato in Louisiana. Plant Dis, 90: 83-88.
        doi: 10.1094/PD-90-0083

    8. Cohen J, Milgram M, Antignus Y, Pearlsman M, Lachman O, Loebenstein G. 1997. Ipomoea crinkle leaf curl caused by a whitefl y-transmitted gemini-like virus. Ann Appl Biol, 131: 273-282.
        doi: 10.1111/j.1744-7348.1997.tb05156.x

    9. Cui X F, Tao X R, Xie Y, Fauquet C M, Zhou X P. 2004. A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol, 78: 13966-13974.
        doi: 10.1128/JVI.78.24.13966-13974.2004

    10. Elmer J S, Sunter G, Gardiner W E, Brand L, Browning C K. 1988. Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol Biol, 10: 225-234.
        doi: 10.1007/BF00027399

    11. Fauquet C M, Stanley J. 2003. Geminivirus classification and nomenclature: progress and problems. Ann App Biol, 142: 165-189.
        doi: 10.1111/j.1744-7348.2003.tb00241.x

    12. Fuentes S, and Salazar L F. 2003. First report of sweet potato leaf curl virus in Peru. Plant Dis, 87: 98.

    13. Grimsley N, Hohn T, Davies J W, Hohn B. 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature, 325: 177-179.
        doi: 10.1038/325177a0

    14. Li R H, Salih S, Hurtt S. 2004. Detection of geminiviruses in sweet potato by polymerase chain reaction. Plant Dis, 88: 1347-1351.
        doi: 10.1094/PDIS.2004.88.12.1347

    15. Ling K S, Jackson D M, Harrison H, Simmons A M, Pesic-VanEsbroeck Z. 2010. Field evaluation of yield effects on the U.S.A. heirloom sweetpotato cultivars infected by Sweet potato leaf curl virus. Crop Protec, 29: 757-765.
        doi: 10.1016/j.cropro.2010.02.017

    16. Lotrakul P, Valverde R A, Clark C A, Fauquet C M. 2003.Properties of a begomovirus isolated from sweet potato [Ipomoea batatas (L.) Lam.] infected with Sweet potato leaf curl virus.Rev Mex Fitopatol, 21: 128-136.

    17. Lozano G, Trenado H P, Valverde R A, Navas-Castillo J. 2009.Novel begomovirus species of recombinant nature in sweet potato (Ipomoea batatas) and Ipomoea indica: taxonomic and phylogenetic implications. J Gen Virol, 90: 2550-62.
        doi: 10.1099/vir.0.012542-0

    18. Luan Y S, Zhang J, Liu D M, Li W L. 2007. Molecular characterization of sweet potato leaf curl virus isolate from China (SPLCV-CN) and its phylogenetic relationship with other members of the Geminiviridae. Virus Genes, 35: 379-385.
        doi: 10.1007/s11262-007-0084-1

    19. Miano D W, LaBonte D R, Clark C A, Valverde R A, Hoy M W, Hurtt S, Li R. 2006. First report of a Begomovirus infecting sweet potato in Kenya. Plant Dis, 90: 832.

    20. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15: 473-497.
        doi: 10.1111/j.1399-3054.1962.tb08052.x

    21. Onuki M, Hanada K. 1998. PCR amplification and partial nucleotide sequences of three dicot-infecting geminiviruses occurring in Japan. Ann Phytopathol Soc Jpn, 64: 116-120.
        doi: 10.3186/jjphytopath.64.116

    22. Paprotka T, Boiteux L S, Fonseca M E N, Resende R O, Jeske H, Faria J C, Ribeiro S G. 2010. Genomic diversity of sweet potato geminiviruses in Brazillian germplasm bank. Virus Res, 149: 224-233.
        doi: 10.1016/j.virusres.2010.02.003

    23. Sambrook J, and Russell D W. 2001. In: Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor. Chapter 8-10.

    24. Simmons A M, Ling K S, Harrison H F, Jackson D M. 2009. Sweet potato leaf curl virus: efficiency of acquisition, retention and transmission by Bemisia tabaci (Hemiptera: Aleyrodidae). Crop Prot, 28: 1007-1011.
        doi: 10.1016/j.cropro.2009.06.011

    25. Soni R, Murray J A H. 1994. Isolation of intact DNA and RNA from plant tissues. Anal Biochem, 218: 474-476.
        doi: 10.1006/abio.1994.1214

    26. Tao X R, Zhou X P. 2004. A modified viral satellite DNA that suppresses gene expression in plants. Plant J, 38: 850-860.
        doi: 10.1111/j.1365-313X.2004.02087.x

    27. Trenado H P, Orilio A F, Marquez-Martin B, Moriones E, Navas-Castillo J. 2011. Sweepoviruses cause disease in sweet potato and related Ipomoea spp.: fulfilling Koch's postulates for a divergent group in the genus Begomovirus. PloS One, 6: e27329.
        doi: 10.1371/journal.pone.0027329

    28. Valverde R A, Sim J, Lotrakul P. 2004. Whitefl y transmission of sweet potato viruses. Virus Res, 100: 123-128.
        doi: 10.1016/j.virusres.2003.12.020

    29. Valverde R A, Clark C A, Valkonen J P T. 2007. Viruses and virus disease complexes of sweetpotato. Plant Viruses, 1: 116-126.

    30. Wasswa P, Otto B, Maruthi M N, Mukasa S B, Monger W, Gibson R W. 2011. First identifi cation of a sweet potato begomovirus (sweepovirus) in Uganda: characterization, detection and distribution. Plant Pathol, 60: 1030-1039.
        doi: 10.1111/j.1365-3059.2011.02464.x

    31. Zhang S C, Ling K S. 2011. Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between sweet potato leaf curl virus and sweet potato leaf curl Georgia virus. Arch Virol, 156: 955-968.
        doi: 10.1007/s00705-011-0930-2

  • 加载中

Figures(3) / Tables(1)

Article Metrics

Article views(4309) PDF downloads(0) Cited by()

Related
Proportional views

    Agroinfection of sweet potato by vacuum infiltration of an infectious sweepovirus

      Corresponding author: Peng Zhang, zhangpeng@sibs.ac.cn
    • 1. National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
    • 2. Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
    • 3. Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China

    Abstract: Sweepovirus is an important monopartite begomovirus that infects plants of the genus Ipomoea worldwide. Development of artificial infection methods for sweepovirus using agroinoculation is a highly efficient means of studying infectivity in sweet potato. Unlike other begomoviruses, it has proven difficult to infect sweet potato plants with sweepoviruses using infectious clones. A novel sweepovirus, called Sweet potato leaf curl virus-Jiangsu (SPLCV-JS), was recently identified in China. In addition, the infectivity of the SPLCV-JS clone has been demonstrated in Nicotiana benthamiana. Here we describe the agroinfection of the sweet potato cultivar Xushu 22 with the SPLCV-JS infectious clone using vacuum infiltration. Yellowing symptoms were observed in newly emerged leaves. Molecular analysis confirmed successful inoculation by the detection of viral DNA. A synergistic effect of SPLCV-JS and the heterologous betasatellite DNA-β of Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10) on enhanced symptom severity and viral DNA accumulation was confirmed. The development of a routine agroinoculation system in sweet potato with SPLCV-JS using vacuum infiltration should facilitate the molecular study of sweepovirus in this host and permit the evaluation of virus resistance of sweet potato plants in breeding programs.