Citation: Mark Spear, Yuntao Wu. Viral exploitation of actin: force-generation and scaffolding functions in viral infection .VIROLOGICA SINICA, 2014, 29(3) : 139-147.  http://dx.doi.org/10.1007/s12250-014-3476-0

Viral exploitation of actin: force-generation and scaffolding functions in viral infection

cstr: 32224.14.s12250-014-3476-0
  • Corresponding author: Yuntao Wu, ywu8@gmu.edu
  • Received Date: 20 May 2014
    Accepted Date: 30 May 2014
    Published Date: 06 June 2014
    Available online: 01 June 2014
  • As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efficacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Specifi cally, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surfi ng, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.

  • 加载中
    1. Aggarwal A, Iemma T L, Shih I, Newsome T P, McAllery S, Cunningham A L, Turville S G. 2012. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog, 8: e1002762.
        doi: 10.1371/journal.ppat.1002762

    2. Agosto L M, Zhong P, Munro J, Mothes W. 2014. Highly Active Antiretroviral Therapies Are Effective against HIV-1 Cell-to-Cell Transmission. PLoS Pathog, 10: e1003982.
        doi: 10.1371/journal.ppat.1003982

    3. Alvarez D E, Agaisse H. 2012. Casein kinase 2 regulates vaccinia virus actin tail formation. Virology, 423: 143-151.
        doi: 10.1016/j.virol.2011.12.003

    4. Alvarez D E, Agaisse H. 2013. The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility. J CellBiol, 202: 1075-1090.
        doi: 10.1083/jcb.201303055

    5. Barrero-Villar M, Cabrero J R, Gordón-Alonso M, Barroso-González J, Alvarez-Losada S, Muñoz-Fernández M A, Sánchez-Madrid F, Valenzuela-Fernández A. 2009. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci, 122: 103-113.
        doi: 10.1242/jcs.035873

    6. Bohn W, Rutter G, Hohenberg H, Mannweiler K, Nobis P. 1986.Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology, 149: 91-106.
        doi: 10.1016/0042-6822(86)90090-5

    7. Brandenburg B, Lee L Y, Lakadamyali M, Rust M J, Zhuang X, Hogle J M. 2007. Imaging poliovirus entry in live cells. PLoS Biol, 5: e183.
        doi: 10.1371/journal.pbio.0050183

    8. Bukrinskaya A, Brichacek B, Mann A, Stevenson M. 1998. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med, 188: 2113-2125.
        doi: 10.1084/jem.188.11.2113

    9. Cameron P U, Saleh S, Sallmann G, Solomon A, Wightman F, Evans V A, Boucher G, Haddad E K, Sekaly R-P, Harman A N, Anderson J L, Jones K L, Mak J, Cunningham A L, Jaworowski A, Lewin S R. 2010. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A, 107: 16934-16939.
        doi: 10.1073/pnas.1002894107

    10. Carter G C, Bernstone L, Baskaran D, James W. 2011. HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology, 409: 234-250.
        doi: 10.1016/j.virol.2010.10.018

    11. Chen P, Hübner W, Spinelli M A, Chen B K. 2007. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol, 81: 12582-12595.
        doi: 10.1128/JVI.00381-07

    12. Clement C, Tiwari V, Scanlan P M, Valyi-Nagy T, Yue B Y, Shukla D. 2006. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol, 174: 1009-1021.
        doi: 10.1083/jcb.200509155

    13. Coller K E, Berger K L, Heaton N S, Cooper J D, Yoon R, Randall G. 2009. RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog, 5: e1000702.
        doi: 10.1371/journal.ppat.1000702

    14. Cudmore S, Cossart P, Griffiths G, Way M. 1995. Actin-based motility of vaccinia virus. Nature, 378: 636-638.
        doi: 10.1038/378636a0

    15. Dierkes R, Warnking K, Liedmann S, Seyer R, Ludwig S, Ehrhardt C. 2014. The Rac1 inhibitor NSC23766 exerts anti-influenza virus properties by affecting the viral polymerase complex activity. PloS One, 9: e88520.
        doi: 10.1371/journal.pone.0088520

    16. Dietzel E, Kolesnikova L, Maisner A. 2013. Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virol J, 10: 249.
        doi: 10.1186/1743-422X-10-249

    17. Dixit R, Tiwari V, Shukla D. 2008. Herpes simplex virus type 1 induces filopodia in differentiated P19 neural cells to facilitate viral spread. Neurosci Lett, 440: 113-118.
        doi: 10.1016/j.neulet.2008.05.031

    18. Frischknecht F, Cudmore S, Moreau V, Reckmann I, Röttger S, Way M. 1999a. Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Curr Biol, 9: 89-92.

    19. Frischknecht F, Moreau V, Röttger S, Gonfl oni S, Reckmann I, Superti-Furga G, Way M. 1999b. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signaling. Nature, 401: 926-929.
        doi: 10.1038/44860

    20. Gao Y, Dickerson J B, Guo F, Zheng J, Zheng Y. 2004. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A, 101: 7618-7623.
        doi: 10.1073/pnas.0307512101

    21. Goley E D, Ohkawa T, Mancuso J, Woodruff J B, D'Alessio J A, Cande W Z, Volkman L E, Welch M D. 2006. Dynamic Nuclear Actin Assembly by Arp2/3 Complex and a Baculovirus WASPLike Protein. Science, 314: 464-467.
        doi: 10.1126/science.1133348

    22. Harmon B, Campbell N, Ratner L. 2010. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog, 6: e1000956.
        doi: 10.1371/journal.ppat.1000956

    23. Harmon B, Ratner L. 2008. Induction of the Galpha(q) signaling cascade by the human immunodeficiency virus envelope is required for virus entry. J Virol, 82: 9191-9205.
        doi: 10.1128/JVI.00424-08

    24. Harries P A, Park J-W, Sasaki N, Ballard K D, Maule A J, Nelson R S. 2009. Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci U S A, 106: 17594-17599.
        doi: 10.1073/pnas.0909239106

    25. Higgs H N, Pollard T D. 1999. Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J Biol Chem, 274: 32531-32534.
        doi: 10.1074/jbc.274.46.32531

    26. Higgs H N, Pollard T D. 2001. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem, 70: 649-676.
        doi: 10.1146/annurev.biochem.70.1.649

    27. Hiller G, Jungwirth C, Weber K. 1981. Fluorescence microscopical analysis of the life cycle of vaccinia virus in chick embryo fibroblasts. Virus-cytoskeleton interactions. Exp Cell Res, 132: 81-87.
        doi: 10.1016/0014-4827(81)90085-9

    28. Hiller G, Weber K, Schneider L, Parajsz C, Jungwirth C. 1979. Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology, 98: 142-153.
        doi: 10.1016/0042-6822(79)90533-6

    29. Hottiger M, Gramatikoff K, Georgiev O, Chaponnier C, Schaffner W, Hübscher U. 1995. The large subunit of HIV-1 reverse transcriptase interacts with beta-actin. Nucleic Acids Res, 23: 736-741.
        doi: 10.1093/nar/23.5.736

    30. Huttunen M, Waris M, Kajander R, Hyypiä T, Marjomäki V. 2014.Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J Virol, 88: 5138-5151.
        doi: 10.1128/JVI.03275-13

    31. Jiménez-Baranda S, Gómez-Moutón C, Rojas A, Martínez-Prats L, Mira E, Ana Lacalle R, Valencia A, Dimitrov DS, Viola A, Delgado R, Martínez-A C, Mañes S. 2007. Filamin-A regulates actin-dependent clustering of HIV receptors. Nat Cell Biol, 9: 838-846.
        doi: 10.1038/ncb1610

    32. Jolly C, Kashefi K, Hollinshead M, Sattentau Q J. 2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med, 199: 283-293.
        doi: 10.1084/jem.20030648

    33. Jolly C, Mitar I, Sattentau Q J. 2007. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J Virol, 81: 5547-5560.
        doi: 10.1128/JVI.01469-06

    34. Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa J I. 2000. Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells Devoted Mol Cell Mech, 5: 289-307.
        doi: 10.1046/j.1365-2443.2000.00326.x

    35. Krempien U, Schneider L, Hiller G, Weber K, Katz E, Jungwirth C. 1981. Conditions for pox virus-specific microvilli formation studied during synchronized virus assembly. Virology, 113: 556-564.
        doi: 10.1016/0042-6822(81)90183-5

    36. Lehmann M J, Sherer N M, Marks C B, Pypaert M, Mothes W. 2005. Actin-and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol, 170: 317-325.
        doi: 10.1083/jcb.200503059

    37. Machesky L M, Insall R H. 2001. WASP homology sequences in baculoviruses. Trends Cell Biol, 11: 286-287.
        doi: 10.1016/S0962-8924(01)02009-8

    38. Mercer J, Helenius A. 2008. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science, 320: 531-535.
        doi: 10.1126/science.1155164

    39. Moss B. 2012. Poxvirus cell entry: how many proteins does it take? Viruses, 4: 688-707.
        doi: 10.3390/v4050688

    40. Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. 2000. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol, 2: 441-448.
        doi: 10.1038/35017080

    41. Nolen B J, Tomasevic N, Russell A, Pierce D W, Jia Z, McCormick C D, Hartman J, Sakowicz R, Pollard T D. 2009. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature, 460: 1031-1034.
        doi: 10.1038/nature08231

    42. Ohkawa T, Volkman L E, Welch M D. 2010. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol, 190: 187-195.
        doi: 10.1083/jcb.201001162

    43. Ohkawa T, Volkman L E. 1999. Nuclear F-Actin Is Required for AcMNPV Nucleocapsid Morphogenesis. Virology, 264: 1-4.
        doi: 10.1006/viro.1999.0008

    44. Pollard T D, Borisy G G. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112: 453-465.
        doi: 10.1016/S0092-8674(03)00120-X

    45. Roberts P C, Compans R W. 1998. Host cell dependence of viral morphology. Proc Natl Acad Sci U S A, 95: 5746-5751.
        doi: 10.1073/pnas.95.10.5746

    46. Röttger S, Frischknecht F, Reckmann I, Smith G L, Way M. 1999.Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol, 73: 2863-2875.

    47. Sánchez E G, Quintas A, Pérez-Núñez D, Nogal M, Barroso S, Carrascosa áL, Revilla Y. 2012. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog, 8: e1002754.
        doi: 10.1371/journal.ppat.1002754

    48. Scaplehorn N, Holmström A, Moreau V, Frischknecht F, Reckmann I, Way M. 2002. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol CB, 12: 740-745.
        doi: 10.1016/S0960-9822(02)00812-6

    49. Schelhaas M, Ewers H, Rajamäki M-L, Day P M, Schiller J T, Helenius A. 2008. Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog, 4: e1000148.
        doi: 10.1371/journal.ppat.1000148

    50. Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day P M, Schiller J T, Helenius A. 2012. Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin-and Lipid Raft-Independent Endocytosis. PLoS Pathog, 8: e1002657.
        doi: 10.1371/journal.ppat.1002657

    51. Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P. 2002a. A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous infl uenza virions. Virology, 301: 212-225.
        doi: 10.1006/viro.2002.1595

    52. Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P. 2002b. A Functional Link between the Actin Cytoskeleton and Lipid Rafts during Budding of Filamentous Infl uenza Virions. Virology, 301: 212-225.
        doi: 10.1006/viro.2002.1595

    53. Sowinski S, Jolly C, Berninghausen O, Purbhoo M A, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky F M, Hopkins C, Onfelt B, Sattentau Q, Davis D M. 2008. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol, 10: 211-219.
        doi: 10.1038/ncb1682

    54. Spear M, Guo J, Turner A, Yu D, Wang W, Meltzer B, He S, Hu X, Shang H, Kuhn J, Wu Y. 2014. HIV-1 Triggers WAVE2 Phosphorylation in Primary CD4 T Cells and Macrophages, Mediating Arp2/3-dependent Nuclear Migration. J Biol Chem, 289: 6949-6959.
        doi: 10.1074/jbc.M113.492132

    55. Stallcup K C, Raine C S, Fields B N. 1983. Cytochalasin B inhibits the maturation of measles virus. Virology, 124: 59-74.
        doi: 10.1016/0042-6822(83)90290-8

    56. Stokes G V. 1976. High-voltage electron microscope study of the release of vaccinia virus from whole cells. J Virol, 18: 636-643.

    57. Tilsner J, Linnik O, Wright K M, Bell K, Roberts A G, Lacomme C, Santa Cruz S, Oparka K J. 2012. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiol, 158: 1359-1370.
        doi: 10.1104/pp.111.189605

    58. Vasiliver-Shamis G, Cho M W, Hioe C E, Dustin M L. 2009.Human Immunodeficiency Virus Type 1 Envelope gp120-Induced Partial T-Cell Receptor Signaling Creates an F-Actin-Depleted Zone in the Virological Synapse. J Virol, 83: 11341-11355.
        doi: 10.1128/JVI.01440-09

    59. Vasiliver-Shamis G, Tuen M, Wu T W, Starr T, Cameron T O, Thomson R, Kaur G, Liu J, Visciano M L, Li H, Kumar R, Ansari R, Han D P, Cho M W, Dustin M L, Hioe C E. 2008.Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. J Virol, 82: 9445-9457.
        doi: 10.1128/JVI.00835-08

    60. Vorster P J, Guo J, Yoder A, Wang W, Zheng Y, Xu X, Yu D, Spear M, Wu Y. 2011. LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection. J Biol Chem, 286: 12554-12564.
        doi: 10.1074/jbc.M110.182238

    61. De Vries E, Tscherne D M, Wienholts M J, Cobos-Jiménez V, Scholte F, García-Sastre A, Rottier PJM, de Haan C A M. 2011.Dissection of the Infl uenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway. PLoS Pathog, 7: e1001329.
        doi: 10.1371/journal.ppat.1001329

    62. Wakimoto H, Shimodo M, Satoh Y, Kitagawa Y, Takeuchi K, Gotoh B, Itoh M. 2013. F-Actin Modulates Measles Virus Cell-Cell Fusion and Assembly by Altering the Interaction between the Matrix Protein and the Cytoplasmic Tail of Hemagglutinin. J Virol, 87: 1974-1984.
        doi: 10.1128/JVI.02371-12

    63. Welch M D, Way M. 2013. Arp2/3-Mediated Actin-Based Motility:A Tail of Pathogen Abuse. Cell Host Microbe, 14: 242-255.
        doi: 10.1016/j.chom.2013.08.011

    64. Wen X, Ding L, Wang J-J, Qi M, Hammonds J, Chu H, Chen X, Hunter E, Spearman P. 2014. ROCK1 and LIM Kinase Modulate Retrovirus Particle Release and Cell-Cell Transmission Events.J Virol, ; DOI: 10.1128/JVI. 00023-14.

    65. Xiang Y, Zheng K, Zhong M, Chen J, Wang X, Wang Q, Wang S, Ren Z, Fan J, Wang Y. 2014. Ubiquitin-proteasome-dependent slingshot 1 downregulation in neuronal cells inactivates cofilin to facilitate HSV-1 replication. Virology, 449: 88-95.
        doi: 10.1016/j.virol.2013.11.011

    66. Yoder A, Yu D, Dong L, Iyer S R, Xu X, Kelly J, Liu J, Wang W, Vorster P J, Agulto L, Stephany D A, Cooper J N, Marsh J W, Wu Y. 2008. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell, 134: 782-792.
        doi: 10.1016/j.cell.2008.06.036

    67. Zheng K, Xiang Y, Wang Q, Jin F, Chen M, Ma K, Ren Z, Wang Y. 2014a. Calcium-signal facilitates herpes simplex virus type 1 nuclear transport through slingshot 1 and calpain-1 activation.Virus Res, 188C: 32-37.

    68. Zheng K, Xiang Y, Wang X, Wang Q, Zhong M, Wang S, Wang X, Fan J, Kitazato K, Wang Y. 2014b. Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio, 5: e00958-00913.

  • 加载中

Figures(1)

Article Metrics

Article views(8385) PDF downloads(17) Cited by()

Related
Proportional views

    Viral exploitation of actin: force-generation and scaffolding functions in viral infection

      Corresponding author: Yuntao Wu, ywu8@gmu.edu
    • National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA

    Abstract: As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efficacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Specifi cally, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surfi ng, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.