Citation: Yongjun Tian, Jing-hsiung James Ou. Genetic and epigenetic alterations in hepatitis B virus-associated hepatocellular carcinoma .VIROLOGICA SINICA, 2015, 30(2) : 85-91.  http://dx.doi.org/10.1007/s12250-015-3582-7

Genetic and epigenetic alterations in hepatitis B virus-associated hepatocellular carcinoma

  • Corresponding author: Jing-hsiung James Ou, jamesou@hsc.usc.edu
  • Received Date: 13 March 2015
    Accepted Date: 25 March 2015
    Published Date: 23 April 2015
    Available online: 01 April 2015
  • Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Its chronic infection can lead to chronic liver inflammation and the accumulation of genetic alterations to result in the oncogenic transformation of hepatocytes. HBV can also sensitize hepatocytes to oncogenic transformation by causing genetic and epigenetic changes of the host chromosomes. HBV DNA can insert into host chromosomes and recent large-scale whole-genome sequencing studies revealed recurrent HBV DNA integrations sites that may play important roles in the initiation of hepatocellular carcinogenesis. HBV can also cause epigenetic changes by altering the methylation status of cellular DNA, the post-translational modification of histones, and the expression of microRNAs. These changes can also lead to the eventual hepatocellular transformation. These recent findings on the genetic and epigenetic alterations of the host chromosomes induced by HBV opened a new avenue for the development of novel diagnosis and treatments for HBV-induced HCC.

  • 加载中
    1. Becker SA, Lee TH, Butel JS, Slagle BL. 1998. Hepatitis b virus x protein interferes with cellular DNA repair. J Virol, 72: 266-272.

    2. Brechot C, Pourcel C, Louise A, Rain B, Tiollais P. 1980. Presence of integrated hepatitis b virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature, 286: 533-535.
        doi: 10.1038/286533a0

    3. Chakraborty PR, Ruiz-Opazo N, Shouval D, Shafritz DA. 1980. Identification of integrated hepatitis b virus DNA and expression of viral rna in an hbsag-producing human hepatocellular carcinoma cell line. Nature, 286: 531-533.
        doi: 10.1038/286531a0

    4. Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, Rogler LE, Zavolan M, Tuschl T, Rogler CE. 2008. Elevated expression of the mir-17-92 polycistron and mir-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol, 173: 856-864.
        doi: 10.2353/ajpath.2008.080096

    5. Cougot D, Neuveut C, Buendia MA. 2005. Hbv induced carcinogenesis. J Clin Virol, 34 Suppl 1: S75-78.

    6. Ding D, Lou X, Hua D, Yu W, Li L, Wang J, Gao F, Zhao N, Ren G, Li L, Lin B. 2012. Recurrent targeted genes of hepatitis b virus in the liver cancer genomes identified by a next-generation sequencing-based approach. PLoS Genet, 8: e1003065.
        doi: 10.1371/journal.pgen.1003065

    7. Edman JC, Gray P, Valenzuela P, Rall LB, Rutter WJ. 1980. Integration of hepatitis b virus sequences and their expression in a human hepatoma cell. Nature, 286: 535-538.
        doi: 10.1038/286535a0

    8. El-Serag HB, Rudolph KL. 2007. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology, 132: 2557-2576.
        doi: 10.1053/j.gastro.2007.04.061

    9. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F, Arai Y, Takahashi H, Shirakihara T, Nagasaki M, Shibuya T, Nakano K, Watanabe-Makino K, Tanaka H, Nakamura H, Kusuda J, Ojima H, Shimada K, Okusaka T, Ueno M, Shigekawa Y, Kawakami Y, Arihiro K, Ohdan H, Gotoh K, Ishikawa O, Ariizumi S, Yamamoto M, Yamada T, Chayama K, Kosuge T, Yamaue H, Kamatani N, Miyano S, Nakagama H, Nakamura Y, Tsunoda T, Shibata T, Nakagawa H. 2012. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet, 44: 760-764.
        doi: 10.1038/ng.2291

    10. Gao P, Wong CC, Tung EK, Lee JM, Wong CM, Ng IO. 2011. Deregulation of microrna expression occurs early and accumulates in early stages of hbv-associated multistep hepatocarcinogenesis. J Hepatol, 54: 117184.

    11. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, Clement B, Balabaud C, Chevet E, Laurent A, Couchy G, Letouze E, Calvo F, Zucman-Rossi J. 2012. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet, 44: 694-698.
        doi: 10.1038/ng.2256

    12. Hai H, Tamori A, Kawada N. 2014. Role of hepatitis b virus DNA integration in human hepatocarcinogenesis. World J Gastroenterol, 20: 62343.

    13. Han H, Sun D, Li W, Shen H, Zhu Y, Li C, Chen Y, Lu L, Li W, Zhang J, Tian Y, Li Y. 2013. A c-myc-microrna functional feedback loop affects hepatocarcinogenesis. Hepatology, 57: 2378-2389.
        doi: 10.1002/hep.26302

    14. Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, Zhu ZD, Zhou B, Liu XY, Liu RF, Fei QL, Chen H, Cai B, Zhou B, Xiao HS, Qin LX, Han ZG. 2012. Exome sequencing of hepatitis b virus-associated hepatocellular carcinoma. Nat Genet, 44: 1117-1121.
        doi: 10.1038/ng.2391

    15. Huang J, Wang Y, Guo Y, Sun S. 2010. Down-regulated micro-rna-152 induces aberrant DNA methylation in hepatitis b virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology, 52: 60-70.
        doi: 10.1002/hep.23660

    16. Jiang Z, Jhunjhunwala S, Liu J, Haverty PM, Kennemer MI, Guan Y, Lee W, Carnevali P, Stinson J, Johnson S, Diao J, Yeung S, Jubb A, Ye W, Wu TD, Kapadia SB, de Sauvage FJ, Gentleman RC, Stern HM, Seshagiri S, Pant KP, Modrusan Z, Ballinger DG, Zhang Z. 2012. The effects of hepatitis b virus integration into the genomes of hepatocellular carcinoma patients. Genome Res, 22: 593-601.
        doi: 10.1101/gr.133926.111

    17. Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, Gao H, Hao K, Willard MD, Xu J, Hauptschein R, Rejto PA, Fernandez J, Wang G, Zhang Q, Wang B, Chen R, Wang J, Lee NP, Zhou W, Lin Z, Peng Z, Yi K, Chen S, Li L, Fan X, Yang J, Ye R, Ju J, Wang K, Estrella H, Deng S, Wei P, Qiu M, Wulur IH, Liu J, Ehsani ME, Zhang C, Loboda A, Sung WK, Aggarwal A, Poon RT, Fan ST, Wang J, Hardwick J, Reinhard C, Dai H, Li Y, Luk JM, Mao M. 2013. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res, 23: 1422-1433.
        doi: 10.1101/gr.154492.113

    18. Kekule AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Koshy R. 1990. The pres2/s region of integrated hepatitis b virus DNA encodes a transcriptional transactivator. Nature, 343: 457-461.
        doi: 10.1038/343457a0

    19. Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, Lin YJ, Wu CT, Liu HS. 2014. Autophagy suppresses tumorigenesis of hepatitis b virus-associated hepatocellular carcinoma through degradation of microrna-224. Hepatology, 59: 505-517.
        doi: 10.1002/hep.v59.2

    20. Lau CC, Sun T, Ching AK, He M, Li JW, Wong AM, Co NN, Chan AW, Li PS, Lung RW, Tong JH, Lai PB, Chan HL, To KF, Chan TF, Wong N. 2014. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell, 25: 335-349.
        doi: 10.1016/j.ccr.2014.01.030

    21. Laursen L. 2014. A preventable cancer. Nature, 516: S2-3.
        doi: 10.1038/516S2a

    22. Lee SM, Lee YG, Bae JB, Choi JK, Tayama C, Hata K, Yun Y, Seong JK, Kim YJ. 2014. Hbx induces hypomethylation of distal intragenic cpg islands required for active expression of developmental regulators. Proc Natl Acad Sci U S A, 111: 9555-9560.
        doi: 10.1073/pnas.1400604111

    23. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. 2009. Control of cccdna function in hepatitis b virus infection. J Hepatol, 51: 581-592.
        doi: 10.1016/j.jhep.2009.05.022

    24. Li W, Zeng X, Lee NP, Liu X, Chen S, Guo B, Yi S, Zhuang X, Chen F, Wang G, Poon RT, Fan ST, Mao M, Li Y, Li S, Wang J, Jianwang, Xu X, Jiang H, Zhang X. 2013. Hivid: An efficient method to detect hbv integration using low coverage sequencing. Genomics, 102: 338-344.
        doi: 10.1016/j.ygeno.2013.07.002

    25. Liang RP, Na H, Li ZF, Ji FP, Jiang SW. 2014. Epigenetic mechanism involved in the hbv/hcv-related hepatocellular carcinoma tumorigenesis. Curr Pharm Des, 20: 1715-1725.
        doi: 10.2174/13816128113199990533

    26. Liu C, Yu J, Yu S, Lavker RM, Cai L, Liu W, Yang K, He X, Chen S. 2010. Microrna-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol, 53: 98-107.
        doi: 10.1016/j.jhep.2010.02.021

    27. Matsubara K, Tokino T. 1990. Integration of hepatitis b virus DNA and its implications for hepatocarcinogenesis. Mol Biol Med, 7: 243-260.

    28. Na B, Huang Z, Wang Q, Qi Z, Tian Y, Lu CC, Yu J, Hanes MA, Kakar S, Huang EJ, Ou JH, Liu L, Yen TS. 2011. Transgenic expression of entire hepatitis b virus in mice induces hepatocarcinogenesis independent of chronic liver injury. PLoS One, 6: e26240.
        doi: 10.1371/journal.pone.0026240

    29. Noh JH, Chang YG, Kim MG, Jung KH, Kim JK, Bae HJ, Eun JW, Shen Q, Kim SJ, Kwon SH, Park WS, Lee JY, Nam SW. 2013. Mir-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer. Cancer Lett, 335: 455-462.
        doi: 10.1016/j.canlet.2013.03.003

    30. Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, Gao W, Fujii M, Osada H, Sekido Y, Murakami S, Tanaka Y, Joh T, Sato S, Takahashi S, Wakita T, Zhu J, Issa JP, Kondo Y. 2014. Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology, 146: 562-572.
        doi: 10.1053/j.gastro.2013.10.056

    31. Ou J, Rutter WJ. 1985. Hybrid hepatitis b virus-host transcripts in a human hepatoma cell. Proc Natl Acad Sci U S A, 82: 83-87.
        doi: 10.1073/pnas.82.1.83

    32. Ozturk M, Arslan-Ergul A, Bagislar S, Senturk S, Yuzugullu H. 2009. Senescence and immortality in hepatocellular carcinoma. Cancer Lett, 286: 103-113.
        doi: 10.1016/j.canlet.2008.10.048

    33. Park IY, Sohn BH, Yu E, Suh DJ, Chung YH, Lee JH, Surzycki SJ, Lee YI. 2007. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis b virus x protein. Gastroenterology, 132: 1476-1494.
        doi: 10.1053/j.gastro.2007.01.034

    34. Scisciani C, Vossio S, Guerrieri F, Schinzari V, De Iaco R, D'Onorio de Meo P, Cervello M, Montalto G, Pollicino T, Raimondo G, Levrero M, Pediconi N. 2012. Transcriptional regulation of mir-224 upregulated in human hccs by nfkappab inflammatory pathways. J Hepatol, 56: 855-861.
        doi: 10.1016/j.jhep.2011.11.017

    35. Shih C, Burke K, Chou MJ, Zeldis JB, Yang CS, Lee CS, Isselbacher KJ, Wands JR, Goodman HM. 1987. Tight clustering of human hepatitis b virus integration sites in hepatomas near a triple-stranded region. J Virol, 61: 3491-3498.

    36. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, Lee NP, Lee WH, Ariyaratne PN, Tennakoon C, Mulawadi FH, Wong KF, Liu AM, Poon RT, Fan ST, Chan KL, Gong Z, Hu Y, Lin Z, Wang G, Zhang Q, Barber TD, Chou WC, Aggarwal A, Hao K, Zhou W, Zhang C, Hardwick J, Buser C, Xu J, Kan Z, Dai H, Mao M, Reinhard C, Wang J, Luk JM. 2012. Genome-wide survey of recurrent hbv integration in hepatocellular carcinoma. Nat Genet, 44: 765-769.
        doi: 10.1038/ng.2295

    37. Tao Y, Ruan J, Yeh SH, Lu X, Wang Y, Zhai W, Cai J, Ling S, Gong Q, Chong Z, Qu Z, Li Q, Liu J, Yang J, Zheng C, Zeng C, Wang HY, Zhang J, Wang SH, Hao L, Dong L, Li W, Sun M, Zou W, Yu C, Li C, Liu G, Jiang L, Xu J, Huang H, Li C, Mi S, Zhang B, Chen B, Zhao W, Hu S, Zhuang SM, Shen Y, Shi S, Brown C, White KP, Chen DS, Chen PJ, Wu CI. 2011. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc Natl Acad Sci U S A, 108: 12042-12047.
        doi: 10.1073/pnas.1108715108

    38. Wang Q, Na B, Ou JH, Pulliam L, Yen TS. 2012. Hepatitis b virus alters the antioxidant system in transgenic mice and sensitizes hepatocytes to fas signaling. PLoS One, 7: e36818.
        doi: 10.1371/journal.pone.0036818

    39. Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, Chung AY, Jooi LL, Lee CG. 2010. Lethal-7 is down-regulated by the hepatitis b virus x protein and targets signal transducer and activator of transcription 3. J Hepatol, 53: 57-66.
        doi: 10.1016/j.jhep.2009.12.043

    40. Wei X, Xiang T, Ren G, Tan C, Liu R, Xu X, Wu Z. 2013. Mir-101 is down-regulated by the hepatitis b virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3a. Cell Signal, 25: 439-446.
        doi: 10.1016/j.cellsig.2012.10.013

    41. Weichert W. 2009. Hdac expression and clinical prognosis in human malignancies. Cancer Lett, 280: 168-176.
        doi: 10.1016/j.canlet.2008.10.047

    42. Wu LM, Yang Z, Zhou L, Zhang F, Xie HY, Feng XW, Wu J, Zheng SS. 2010. Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in hbv-associated hepatocellular carcinoma. PLoS One, 5: e14460.
        doi: 10.1371/journal.pone.0014460

    43. Xie HJ, Noh JH, Kim JK, Jung KH, Eun JW, Bae HJ, Kim MG, Chang YG, Lee JY, Park H, Nam SW. 2012. Hdac1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer. PLoS One, 7: e34265.
        doi: 10.1371/journal.pone.0034265

    44. Xu L, Beckebaum S, Iacob S, Wu G, Kaiser GM, Radtke A, Liu C, Kabar I, Schmidt HH, Zhang X, Lu M, Cicinnati VR. 2014. Microrna-101 inhibits human hepatocellular carcinoma progression through ezh2 downregulation and increased cytostatic drug sensitivity. J Hepatol, 60: 590-598.
        doi: 10.1016/j.jhep.2013.10.028

    45. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, Deng Y, Zhao J, Jiang S, Yuan Y, Wang HY, Cheng SQ, Xie D, Wang XF. 2012. Tgf-beta-mir-34a-ccl22 signaling-induced treg cell recruitment promotes venous metastases of hbv-positive hepatocellular carcinoma. Cancer Cell, 22: 291-303.
        doi: 10.1016/j.ccr.2012.07.023

    46. Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK, Lee MO. 2008. Hepatitis b virus x protein induces the expression of mta1 and hdac1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene, 27: 3405-3413.
        doi: 10.1038/sj.onc.1211000

    47. Zhang X, Liu S, Hu T, Liu S, He Y, Sun S. 2009. Up-regulated microrna-143 transcribed by nuclear factor kappa b enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology, 50: 490-499.
        doi: 10.1002/hep.23008

    48. Zhao J, Wu G, Bu F, Lu B, Liang A, Cao L, Tong X, Lu X, Wu M, Guo Y. 2010. Epigenetic silence of ankyrin-repeat-containing, sh3-domain-containing, and proline-rich-region-containing protein 1 (aspp1) and aspp2 genes promotes tumor growth in hepatitis b virus-positive hepatocellular carcinoma. Hepatology, 51: 142-153.
        doi: 10.1002/hep.23247

    49. Zhao Q, Li T, Qi J, Liu J, Qin C. 2014. The mir-545/374a cluster encoded in the ftx lncrna is overexpressed in hbv-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PLoS One, 9: e109782.
        doi: 10.1371/journal.pone.0109782

    50. Zheng Y, Chen WL, Louie SG, Yen TS, Ou JH. 2007. Hepatitis b virus promotes hepatocarcinogenesis in transgenic mice. Hepatology, 45: 16-21.
        doi: 10.1002/(ISSN)1527-3350

  • 加载中

Figures(1)

Article Metrics

Article views(5497) PDF downloads(26) Cited by()

Related
Proportional views

    Genetic and epigenetic alterations in hepatitis B virus-associated hepatocellular carcinoma

      Corresponding author: Jing-hsiung James Ou, jamesou@hsc.usc.edu
    • Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles 90033, USA

    Abstract: Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Its chronic infection can lead to chronic liver inflammation and the accumulation of genetic alterations to result in the oncogenic transformation of hepatocytes. HBV can also sensitize hepatocytes to oncogenic transformation by causing genetic and epigenetic changes of the host chromosomes. HBV DNA can insert into host chromosomes and recent large-scale whole-genome sequencing studies revealed recurrent HBV DNA integrations sites that may play important roles in the initiation of hepatocellular carcinogenesis. HBV can also cause epigenetic changes by altering the methylation status of cellular DNA, the post-translational modification of histones, and the expression of microRNAs. These changes can also lead to the eventual hepatocellular transformation. These recent findings on the genetic and epigenetic alterations of the host chromosomes induced by HBV opened a new avenue for the development of novel diagnosis and treatments for HBV-induced HCC.