For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Yue Yin, Herman W. Favoreel. Herpesviruses and the Type Ⅲ Interferon System [J].VIROLOGICA SINICA.

Herpesviruses and the Type Ⅲ Interferon System

  • Corresponding author: Herman W. Favoreel,, ORCID: 0000-0003-4993-6857
  • Received Date: 09 September 2020
    Accepted Date: 27 October 2020
    Published Date: 05 January 2021
  • Type Ⅲ interferons (IFNs) represent the most recently discovered group of IFNs. Together with type Ⅰ IFNs (e.g. IFN-α/β), type Ⅲ IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type Ⅰ IFNs and type Ⅲ IFNs perform largely redundant functions. However, it has become evident that type Ⅲ IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type Ⅰ IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type Ⅲ IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.

  • 加载中
    1. Albà MM, Das R, Orengo CA, Kellam P (2001) Genomewide function conservation and phylogeny in the Herpesviridae. Genome Res 11:43–54
        doi: 10.1101/gr.149801

    2. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR (2006) Lambda interferon (IFN-λ), a type Ⅲ IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80:4501–4509
        doi: 10.1128/JVI.80.9.4501-4509.2006

    3. Ank N, Iversen MB, Bartholdy C, Staeheli P, Hartmann R, Jensen UB, Dagnaes-Hansen F, Thomsen AR, Chen Z, Haugen H (2008) An important role for type Ⅲ interferon (IFN-λ/IL-28) in TLR-induced antiviral activity. J Immunol 180:2474–2485
        doi: 10.4049/jimmunol.180.4.2474

    4. Arslan M, Yang X, Santhakumar D, Liu X, Hu X, Munir M, Li Y, Zhang Z (2019) Dynamic expression of interferon lambda regulated genes in primary fibroblasts and immune organs of the chicken. Genes 10:145
        doi: 10.3390/genes10020145

    5. Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (2007) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    6. Berry R, Watson GM, Jonjic S, Degli-Esposti MA, Rossjohn J (2020) Modulation of innate and adaptive immunity by cytomegaloviruses. Nat Rev Immunol 20:113–127
        doi: 10.1038/s41577-019-0225-5

    7. Bibert S, Wojtowicz A, Taffé P, Manuel O, Bernasconi E, Furrer H, Günthard HF, Hoffmann M, Kaiser L, Osthoff M (2014) The IFNL3/4 ΔG variant increases susceptibility to cytomegalovirus retinitis among HIV-infected patients. Aids 28:1885–1889
        doi: 10.1097/QAD.0000000000000379

    8. Bilichodmath S, Nair SK, Bilichodmath R, Mangalekar SB (2018) mRNA expression of IFN-λs in the gingival tissue of patients with chronic or aggressive periodontitis: a polymerase chain reaction study. J Periodontol 89:867–874
        doi: 10.1002/JPER.17-0349

    9. Bin L, Li X, Richers B, Streib JE, Hu JW, Taylor P, Leung DY (2018) Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: A potential role in eczema herpeticum. J Allergy Clin Immunol 141(2085–2093):e2081
        doi: 10.1016/j.jaci.2018.01.001

    10. Blumer T, Coto-Llerena M, Duong FH, Heim MH (2017) SOCS1 is an inducible negative regulator of interferon λ (IFN-λ)–induced gene expression in vivo. J Biol Chem 292:17928–17938
        doi: 10.1074/jbc.M117.788877

    11. Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte J-M, Diebold J, Diepolder H, Adler B, Auernhammer CJ (2005) IL-28A and IL-29 Mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic expression. Am J Physiol Gastrointest Liver Physiol 289:960–968
        doi: 10.1152/ajpgi.00126.2005

    12. Bravo D, Solano C, Giménez E, Remigia MJ, Corrales I, Amat P, Navarro D (2014) Effect of the IL28B Rs12979860 C/T polymorphism on the incidence and features of active cytomegalovirus infection in allogeneic stem cell transplant patients. J Med Virol 86:838–844
        doi: 10.1002/jmv.23865

    13. Chen S, Zhang W, Zhou Q, Wang A, Sun L, Wang M, Jia R, Zhu D, Liu M, Sun K (2017) Cross-species antiviral activity of goose interferon lambda against duck plague virus is related to its positive self-regulatory feedback loop. J Gen Virol 98:1455–1466
        doi: 10.1099/jgv.0.000788

    14. Costa AS, Agostini S, Guerini FR, Mancuso R, Zanzottera M, Ripamonti E, Racca V, Nemni R, Clerici M (2017) Modulation of immune responses to herpes simplex virus type 1 by IFNL3 and IRF7 polymorphisms: a study in Alzheimer's disease. J Alzheimer's Dis 60:1055–1063
        doi: 10.3233/JAD-170520

    15. Dağ F, Dölken L, Holzki J, Drabig A, Weingärtner A, Schwerk J, Lienenklaus S, Conte I, Geffers R, Davenport C (2014) Reversible silencing of cytomegalovirus genomes by type i interferon governs virus latency. PLoS Pathog 10:e1003962
        doi: 10.1371/journal.ppat.1003962

    16. Danastas K, Miranda-Saksena M, Cunningham AL (2020) Herpes Simplex Virus Type 1 Interactions with the Interferon System. Int J Mol Sci 21:5150
        doi: 10.3390/ijms21145150

    17. De Pelsmaeker S, Romero N, Vitale M, Favoreel HW (2018) Herpesvirus evasion of natural killer cells. J Virol 92:e2105–e2117

    18. De Regge N, Van Opdenbosch N, Nauwynck HJ, Efstathiou S, Favoreel HW (2010) Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PloS one 5:e13076
        doi: 10.1371/journal.pone.0013076

    19. Ding S, Khoury-Hanold W, Iwasaki A, Robek MD (2014) Epigenetic reprogramming of the type Ⅲ interferon response potentiates antiviral activity and suppresses tumor growth. PLoS Biol 12:e1001758
        doi: 10.1371/journal.pbio.1001758

    20. Donnelly RP, Kotenko SV (2010) Interferon-lambda: a new addition to an old family. J Interferon Cytokine Res 30:555–564
        doi: 10.1089/jir.2010.0078

    21. Egli A, Levin A, Santer DM, Joyce M, O'Shea D, Thomas BS, Lisboa LF, Barakat K, Bhat R, Fischer KP (2014) Immunomodulatory function of interleukin 28B during primary infection with cytomegalovirus. J Infect Dis 210:717–727
        doi: 10.1093/infdis/jiu144

    22. Enquist LW, Leib DA (2017) Intrinsic and innate defenses of neurons: Detente with the herpesviruses. J Virol 91

    23. Fan W, Xie S, Zhao X, Li N, Chang C, Li L, Yu G, Chi X, Pan Y, Niu J (2016) IFN-λ4 desensitizes the response to IFN-α treatment in chronic hepatitis c through long-term induction of USP18. J Gen Virol 97:2210–2220
        doi: 10.1099/jgv.0.000522

    24. Fernández-Ruiz M, Corrales I, Amat P, González E, Andrés A, Navarro D, Aguado J (2015) Influence of age and HLA Alleles on the CMV-specific cell-mediated immunity among CMV-seropositive kidney transplant candidates. Am J Transplant Off J Am Soc Transplante Am Soc Transplant Surg 15:2525–2526
        doi: 10.1111/ajt.13370

    25. Fuld S, Cunningham C, Klucher K, Davison AJ, Blackbourn DJ (2006) Inhibition of interferon signaling by the Kaposi's sarcoma-associated herpesvirus full-length viral interferon regulatory factor 2 protein. J Virol 80:3092–3097
        doi: 10.1128/JVI.80.6.3092-3097.2006

    26. García-Sastre A (2017) Ten strategies of interferon evasion by viruses. Cell Host Microbe 22:176–184
        doi: 10.1016/j.chom.2017.07.012

    27. Gimeno Brias S, Marsden M, Forbester J, Clement M, Brandt C, Harcourt K, Kane L, Chapman L, Clare S, Humphreys IR (2018) Interferon lambda is required for interferon gamma-expressing NK cell responses but does not afford antiviral protection during acute and persistent murine cytomegalovirus infection. PLoS ONE 13:e0197596
        doi: 10.1371/journal.pone.0197596

    28. Gonzalez-Perez AC, Stempel M, Chan B, Brinkmann MM (2020) One step ahead: herpesviruses Light the Way to Understanding Interferon-Stimulated Genes (ISGs). Front Microbiol 11:124
        doi: 10.3389/fmicb.2020.00124

    29. Griffiths SJ, Koegl M, Boutell C, Zenner HL, Crump CM, Pica F, Gonzalez O, Friedel CC, Barry G, Martin K (2013) A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication. PLoS Pathog 9:e1003514
        doi: 10.1371/journal.ppat.1003514

    30. Grinde B (2013) Herpesviruses: latency and reactivation–viral strategies and host response. J Oral Microbiol 5:22766
        doi: 10.3402/jom.v5i0.22766

    31. Huang M, Jiang J-D, Peng Z (2014) Recent advances in the anti-HCV mechanisms of interferon. Acta Pharmaceutica Sinica B 4:241–247
        doi: 10.1016/j.apsb.2014.06.010

    32. Iversen MB, Ank N, Melchjorsen J, Paludan SR (2010) Expression of type Ⅲ interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-κB than type Ⅰ IFNs. J Virol 84:4579–4586
        doi: 10.1128/JVI.02591-09

    33. Jacobs S, Zeippen C, Wavreil F, Gillet L, Michiels T (2019) IFN-λ Decreases Murid Herpesvirus-4 infection of the olfactory epithelium but fails to prevent virus reactivation in the vaginal mucosa. Viruses 11:757
        doi: 10.3390/v11080757

    34. Jahanban-Esfahlan R, Seidi K, Majidinia M, Karimian A, Yousefi B, Nabavi SM, Astani A, Berindan-Neagoe I, Gulei D, Fallarino F (2019) Toll-like receptors as novel therapeutic targets for herpes simplex virus infection. Rev Med Virol 29:e2048
        doi: 10.1002/rmv.2048

    35. Jayanthi D, Faizuddin M, Noor Ahamadi H (2017) Association of interferon lambda-1 with herpes simplex viruses-1 and-2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis. J Investig Clin Dent 8:e12200
        doi: 10.1111/jicd.12200

    36. Johnston C, Gottlieb SL, Wald A (2016) Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 34:2948–2952
        doi: 10.1016/j.vaccine.2015.12.076

    37. Jones C (2019) Bovine herpesvirus 1 counteracts immune responses and immune-surveillance to enhance pathogenesis and virus transmission. Front Immunol 10:1008
        doi: 10.3389/fimmu.2019.01008

    38. Karpala AJ, Morris KR, Broadway MM, McWaters PG, O'Neil TE, Goossens KE, Lowenthal JW, Bean AG (2008) Molecular cloning, expression, and characterization of chicken IFN-λ. J Interferon Cytokine Res 28:341–350
        doi: 10.1089/jir.2007.0117

    39. Kim J-A, Park S-K, Seo S-W, Lee C-H, Shin OS (2017) STING is involved in antiviral immune response against VZV infection via the induction of type Ⅰ and Ⅲ IFN pathways. J Investig Dermatol 137:2101–2109
        doi: 10.1016/j.jid.2017.03.041

    40. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP (2003) IFN-λs mediate antiviral protection through a distinct class Ⅱ cytokine receptor complex. Nat Immunol 4:69–77

    41. Koyuncu OO, MacGibeny MA, Enquist LW (2018) Latent versus productive infection: The alpha herpesvirus switch. Future Virol 13:431–443
        doi: 10.2217/fvl-2018-0023

    42. Kuhs KAL, Kuniholm MH, Pfeiffer RM, Chen S, Desai S, Edlin BR, Peters MG, Plankey M, Sharp GB, Strickler HD (2015) Interferon lambda 4 genotype is not associated with recurrence of oral or genital herpes. PLoS ONE 10:e0138827
        doi: 10.1371/journal.pone.0138827

    43. La Rosa F, Agostini S, Bianchi A, Nemni R, Piancone F, Marventano I, Mancuso R, Saresella M, Clerici M (2019) Herpes simplex virus-1 (HSV-1) infection induces a potent but ineffective IFN-λ production in immune cells of AD and PD patients. J Translat Med 17:286
        doi: 10.1186/s12967-019-2034-9

    44. Langhans B, Kupfer B, Braunschweiger I, Arndt S, Schulte W, Nischalke HD, Nattermann J, Oldenburg J, Sauerbruch T, Spengler U (2011) Interferon-lambda serum levels in hepatitis C. J Hepatol 54:859–865
        doi: 10.1016/j.jhep.2010.08.020

    45. Lauterbach H, Bathke B, Gilles S, Traidl-Hoffmann C, Luber CA, Fejer G, Freudenberg MA, Davey GM, Vremec D, Kallies A (2010) Mouse CD8α+DCs and human BDCA3+DCs are major producers of IFN-λ in response to poly IC. J Exp Med 207:2703–2717
        doi: 10.1084/jem.20092720

    46. Li J, Hu S, Zhou L, Ye L, Wang X, Ho J, Ho W (2011) Interferon lambda inhibits herpes simplex virus type Ⅰ infection of human astrocytes and neurons. Glia 59:58–67
        doi: 10.1002/glia.21076

    47. Li J, Ye L, Wang X, Hu S, Ho W (2012) Induction of interferon-λ contributes to toll-like receptor 3-mediated herpes simplex virus type 1 inhibition in astrocytes. J Neurosci Res 90:399–406
        doi: 10.1002/jnr.22758

    48. Li Z, Lu X, Zhu Y, Cheng P, Liu S, Zhang Y, Tang J, Yang S, Zhou L (2017) Lambda-interferons inhibit herpes simplex virus type 2 replication in human cervical epithelial cells through activation of JAK/STAT pathway. Jpn J Infect Dis JJID 2016:2465
        doi: 10.7883/yoken.JJID.2016.465

    49. Linderman JA, Kobayashi M, Rayannavar V, Fak JJ, Darnell RB, Chao MV, Wilson AC, Mohr I (2017) Immune escape via a transient gene expression program enables productive replication of a latent pathogen. Cell Rep 18:1312–1323
        doi: 10.1016/j.celrep.2017.01.017

    50. Liu F, Liu C, Hu X, Shang Y, Wu L (2017) MicroRNA-21: a positive regulator for optimal production of type Ⅰ and type Ⅲ interferon by plasmacytoid dendritic cells. Front Immunol 8:947
        doi: 10.3389/fimmu.2017.00947

    51. Liu Q, Rao Y, Tian M, Zhang S, Feng P (2019) Modulation of innate immune signaling pathways by herpesviruses. Viruses 11:572
        doi: 10.3390/v11060572

    52. Looker KJ, Magaret AS, May MT, Turner KM, Vickerman P, Gottlieb SL, Newman LM (2015) Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS ONE 10:e0140765
        doi: 10.1371/journal.pone.0140765

    53. Lopušná K, Režuchová I, Kabat P, Kúdelová M (2014) Interferon lambda induces antiviral response to herpes simplex virus 1 infection. Acta Virol 58:325–332
        doi: 10.4149/av_2014_03_325

    54. Lopušná K, Benkóczka T, Lupták J, Matúšková R, Lukáčiková L', Ovečková I, Režuchová I (2016) Murine gammaherpesvirus targets type Ⅰ IFN receptor but not type Ⅲ IFN receptor early in infection. Cytokine 83:158–170
        doi: 10.1016/j.cyto.2016.04.013

    55. Manuel O, Wójtowicz A, Bibert S, Mueller NJ, Van Delden C, Hirsch HH, Steiger J, Stern M, Egli A, Garzoni C (2015) Influence of IFNL3/4 polymorphisms on the incidence of cytomegalovirus infection after solid-organ transplantation. J Infect Dis 211:906–914
        doi: 10.1093/infdis/jiu557

    56. Megjugorac NJ, Gallagher GE, Gallagher G (2009) Modulation of human plasmacytoid DC function by IFN-λ1 (IL-29). J Leukoc Biol 86:1359–1363
        doi: 10.1189/jlb.0509347

    57. Megjugorac NJ, Gallagher GE, Gallagher G (2010) IL-4 enhances IFN-λ1 (IL-29) production by plasmacytoid DCs via monocyte secretion of IL-1Ra. Blood J Am Soc Hematol 115:4185–4190
        doi: 10.1182/blood-2009-09-246157

    58. Melchjorsen J, Siren J, Julkunen I, Paludan SR, Matikainen S (2006) Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-κB and IRF-3. J Gen Virol 87:1099–1108
        doi: 10.1099/vir.0.81541-0

    59. Melchjorsen J, Rintahaka J, Søby S, Horan KA, Poltajainen A, Østergaard L, Paludan SR, Matikainen S (2010) Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase Ⅲ-independent pathways. J Virol 84:11350–11358
        doi: 10.1128/JVI.01106-10

    60. Murray MJ, Peters NE, Reeves MB (2018) Navigating the host cell response during entry into sites of latent cytomegalovirus infection. Pathogens 7:30
        doi: 10.3390/pathogens7010030

    61. Nordström I, Eriksson K (2012) HHV-6B induces IFN-lambda1 responses in cord plasmacytoid dendritic cells through TLR9. PLoS ONE 7:e38683
        doi: 10.1371/journal.pone.0038683

    62. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, Boulant S, Gehrke L, Cossart P, Kagan JC (2014) Diverse intracellular pathogens activate type Ⅲ interferon expression from peroxisomes. Nat Immunol 15:717
        doi: 10.1038/ni.2915

    63. Onabajo OO, Muchmore B, Prokunina-Olsson L (2019) The IFN-λ4 conundrum: when a good interferon goes bad. J Interferon Cytokine Res 39:636–641
        doi: 10.1089/jir.2019.0044

    64. Paquin A, Onabajo OO, Tang W, Prokunina-Olsson L (2016) Comparative functional analysis of 12 mammalian IFN-λ4 orthologs. J Interferon Cytokine Res 36:30–36
        doi: 10.1089/jir.2015.0096

    65. Pica F, Volpi A, Gaziano R, Garaci E (2010) Interferon-λ in immunocompetent individuals with a history of recurrent herpes labialis. Antiviral Therapy 15:737
        doi: 10.3851/IMP1610

    66. Pontejo SM, Murphy PM, Pease JE (2018) Chemokine subversion by human herpesviruses. J Innate Immun 10:465–478
        doi: 10.1159/000492161

    67. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45:164–171
        doi: 10.1038/ng.2521

    68. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J (2003) IL-28, IL-29 and their class Ⅱ cytokine receptor IL-28R. Nat Immunol 4:63–68
        doi: 10.1038/ni873

    69. Song R, Koyuncu OO, Greco TM, Diner BA, Cristea IM, Enquist LW (2016) Two modes of the axonal interferon response limit alphaherpesvirus neuroinvasion. mBio 7:e02145–15
        doi: 10.1128/mBio.02145-15

    70. Sorgeloos F, Kreit M, Hermant P, Lardinois C, Michiels T (2013) Antiviral type ⅰ and type ⅲ interferon responses in the central nervous system. Viruses 5:834–857
        doi: 10.3390/v5030834

    71. Steed AL, Barton ES, Tibbetts SA, Popkin DL, Lutzke ML, Rochford R, Virgin HW (2006) Gamma interferon blocks gammaherpesvirus reactivation from latency. J Virol 80:192–200
        doi: 10.1128/JVI.80.1.192-200.2006

    72. Su C, Zhan G, Zheng C (2016) Evasion of host antiviral innate immunity by HSV-1, an update. Virol J 13:1–9
        doi: 10.1186/s12985-015-0456-4

    73. Sun C, Luecke S, Bodda C, Jønsson KL, Cai Y, Zhang B-C, Jensen SB, Nordentoft I, Jensen JM, Jakobsen MR (2019) Cellular requirements for sensing and elimination of incoming HSV-1 DNA and capsids. J Interferon Cytokine Res 39:191–204
        doi: 10.1089/jir.2018.0141

    74. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'hUigin C, Kidd J, Kidd K, Khakoo SI, Alexander G (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–801
        doi: 10.1038/nature08463

    75. Thomson SJ, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BM, Udalova IA (2009) The role of transposable elements in the regulation of IFN-λ1 gene expression. Proc Natl Acad Sci 106:11564–11569
        doi: 10.1073/pnas.0904477106

    76. Tognarelli EI, Palomino TF, Corrales N, Bueno SM, Kalergis AM, González PA (2019) Herpes simplex virus evasion of early host antiviral responses. Front Cellular Infect Microbiol 9:127
        doi: 10.3389/fcimb.2019.00127

    77. Wells AI, Coyne CB (2018) Type Ⅲ interferons in antiviral defenses at barrier surfaces. Trends Immunol 39:848–858
        doi: 10.1016/

    78. Ye L, Schnepf D, Staeheli P (2019) Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol 19:614–625
        doi: 10.1038/s41577-019-0182-z

    79. Yin Z, Dai J, Deng J, Sheikh F, Natalia M, Shih T, Lewis-Antes A, Amrute SB, Garrigues U, Doyle S (2012) Type Ⅲ IFNs are produced by and stimulate human plasmacytoid dendritic cells. J Immunol 189:2735–2745
        doi: 10.4049/jimmunol.1102038

    80. Zanoni I, Granucci F, Broggi A (2017) Interferon (IFN)-λ takes the helm: immunomodulatory roles of type Ⅲ IFNs. Front Immunol 8:1661
        doi: 10.3389/fimmu.2017.01661

    81. Zhang S-Y, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–1527
        doi: 10.1126/science.1139522

    82. Zhang S-Q, Zhang Z, Luo X, Yang S, Chai Y, Huang H-L, Yin X-Y, Hu D-J, Yang C-J, Liu J-L (2011) Interleukin 29 enhances expression of Toll receptor 3 and mediates antiviral signals in human keratinocytes. Inflamm Res 60:1031
        doi: 10.1007/s00011-011-0364-z

    83. Zhang S-Y, Abel L, Casanova J-L (2013) Mendelian predisposition to herpes simplex encephalitis. In: Handbook of Clinical Neurology, vol 112. Elsevier, pp 1091–1097.

    84. Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R (2007) Type Ⅲ interferon (IFN) induces a type Ⅰ IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol 81:7749–7758
        doi: 10.1128/JVI.02438-06

    85. Zhou L, Li J, Wang X, Ye L, Hou W, Ho J, Li H, Ho W (2011) IL-29/IL-28A suppress HSV-1 infection of human NT2-N neurons. J Neurovirol 17:212–219
        doi: 10.1007/s13365-011-0031-8

    86. Zhou L, Li J-L, Zhou Y, Liu J-B, Zhuang K, Gao J-F, Liu S, Sang M, Wu J-G, Ho W-Z (2015) Induction of interferon-λ contributes to TLR3 and RIG-I activation-mediated inhibition of herpes simplex virus type 2 replication in human cervical epithelial cells. Mhr Basic Sci Reprod Med 21:917–929
        doi: 10.1093/molehr/gav058

    87. Zhou Y, Wang Z, Xu Y, Zhang Z, Hua R, Liu W, Jiang C, Chen Y, Yang W, Kong W (2017) Optimized DNA vaccine enhanced by adjuvant IL28B induces protective immune responses against herpes simplex virus type 2 in mice. Viral Immunol 30:601–614
        doi: 10.1089/vim.2017.0033

  • 加载中