Citation: David C.J. Carpentier, Linda A. King. The Long Road to Understanding the Baculovirus P10 Protein .VIROLOGICA SINICA, 2009, 24(4) : 227-242.  http://dx.doi.org/10.1007/s12250-009-3045-0

The Long Road to Understanding the Baculovirus P10 Protein

cstr: 32224.14.s12250-009-3045-0
  • Corresponding author: Linda A. King, laking@brookes.ac.uk
  • Received Date: 31 January 2009
    Accepted Date: 27 May 2009
    Available online: 01 August 2009
  • The baculovirus P10 protein has always represented a mystery in the field of insect virology. Like the baculovirus polyhedrin protein it is expressed at high levels very late in infection. Homologues of the Autographa californica nucleopolyhedrovirus p10 gene are conserved in all Alphabaculoviruses and in other viruses of lepidopteran hosts yet is completely dispensable for virus replication and transmission. P10 is a microtubule interacting protein whose expression has been associated with the formation of a variety of complex and extensive cytoplasmic and nuclear structures. P10 has been associated with a number of roles during infection ranging from the formation of virus occlusion bodies, to affecting the rate of cellular and/or nuclear lysis during the final stages of the virus replication cycle. In this article we review recent work aimed at understanding the role of this enigmatic protein, putting them into context with recent advances in understanding of protein structure and function. We look back at a number of historical studies and observations, reanalysing their conclusions based on recent data and our own observations. The role of the P10 protein during baculovirus replication remains elusive, however, novel avenues of investigation have been identified that will, we are sure, eventually lead to an understanding of this protein.

  • 加载中
    1. Adang M J, Miller L K. 1982. Molecular cloning of DNA complementary to mRNA of the baculovirus Autographa californica nuclear polyhedrosis virus: location and gene products of RNA transcripts found late in infection. J Virol, 44 (3): 782-793.

    2. Alaoui-Ismaili M H, Richardson C D. 1996. Identifi-cation and characterization of a filament-associated protein encoded by Amsacta moorei entomopoxvirus. J Virol, 70 (5): 2697-2705.

    3. Alaoui-Ismaili M H, Richardson C D. 1998. Insect virus proteins (FALPE and p10) self-associate to form filaments in infected cells. J Virol, 72 (3): 2213-2223.

    4. Bonner W M. 1975. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell Biol, 64 (2): 421-430.

    5. Brown J H, Cohen C, Parry D A. 1996. Heptad breaks in alpha-helical coiled coils: stutters and stammers. Proteins, 26 (2): 134-145.
        doi: 10.1002/(ISSN)1097-0134

    6. Carpentier D C, Griffiths C M, King L A. 2008. The baculovirus P10 protein of Autographa californica nuc-leopolyhedrovirus forms two distinct cytoskeletal-like structures and associates with polyhedral occlusion bodies during infection. Virology, 371 (2): 278-291.
        doi: 10.1016/j.virol.2007.09.043

    7. Chaabihi H, Ogliastro M H, Martin M, et al. 1993. Competition between baculovirus polyhedrin and p10 gene expression during infection of insect cells. J Virol, 67 (5): 2664-2671.

    8. Chang D K, Cheng S F, Trivedi V D, et al. 1999. Proline affects oligomerization of a coiled coil by inducing a kink in a long helix. J Struct Biol, 128 (3): 270-279.
        doi: 10.1006/jsbi.1999.4182

    9. Cheley S, Kosik K S, Paskevich P, et al. 1992. Phosphorylated baculovirus p10 is a heat-stable microtubule-associated protein associated with process formation in Sf9 cells. J Cell Sci, 102 (Pt 4): 739-752.

    10. Chothia C, Levitt M, Richardson D. 1981. Helix to helix packing in proteins. J Mol Biol, 145 (1): 215-250.
        doi: 10.1016/0022-2836(81)90341-7

    11. Chung K L, Brown M, Faulkner P. 1980. Studies on the morphogenesis of polyhedral inclusion bodies of a bacu-lovirus autographa californica NPV. J Gen Virol, 46: 335-347.
        doi: 10.1099/0022-1317-46-2-335

    12. Cohen C, Parry D A. 1994. Alpha-helical coiled coils: more facts and better predictions. Science, 263 (5146): 488-489.
        doi: 10.1126/science.8290957

    13. Crick F H C. 1952. Is alpha-keratin a coiled coil? Nature, 170 (4334): 882-883.

    14. Crick F H C. 1953. The packing of alpha-helices: Simple coiled-coils. Acta Crystallogr, 6: 689-697.
        doi: 10.1107/S0365110X53001964

    15. Croizier G, Gonnet P, Devauchelle G. 1987. Localisation cytologique de la proteine non structurale p10 du baculovirus de la polyedrose nucleaire do Lepidoptere Galleria mel-lonella. L CR Acad Sci Paris, 305: 677-681.

    16. Crook N. 1991.Baculoviridae: subgroup B: Comparative aspects of granulosis viruses. In: Viruses of Invertebrates (Kurstak E, ed.), New York: Marcel Dekker. p73-110.

    17. Dong C, Deng F, Li D, et al. 2007. The heptad repeats region is essential for AcMNPV P10 filament formation and not the proline-rich or the C-terminus basic regions. Virology, 365 (2): 390-397
        doi: 10.1016/j.virol.2007.03.051

    18. Dong C, Li D, Long G, et al. 2005. Identification of functional domains required for HearNPV P10 filament formation. Virology, 338 (1): 112-120.
        doi: 10.1016/j.virol.2005.05.003

    19. Fong J H, Keating A E, Singh M. 2004. Predicting specificity in bZIP coiled-coil protein interactions. Genome Biol, 5 (2): R11.
        doi: 10.1186/gb-2004-5-2-r11

    20. Fuxa J R, Matter M M, Abdel-Rahman A, et al. 2001. Persistence and Distribution of Wild-Type and Recombi-nant Nucleopolyhedroviruses in Soil. Microb Ecol, 41 (3): 222-231.
        doi: 10.1007/s002480000088

    21. Garcia M L, Cleveland D W. 2001. Going new places using an old MAP: tau, microtubules and human neurode-generative disease. Curr Opin Cell Biol, 13 (1): 41-48.
        doi: 10.1016/S0955-0674(00)00172-1

    22. Ghose R, Shekhtman A, Goger M J, et al. 2001. A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Biol, 8 (11): 998-1004.
        doi: 10.1038/nsb1101-998

    23. Goenka S, Weaver R F. The p26 gene of the Autographa californica nucleopolyhedrovirus: timing of transcription, and cellular localization and dimerization of product. Virus Res. 2008 Feb; 131 (2): 136-44.
        doi: 10.1016/j.virusres.2007.08.017

    24. Gruber M, Soding J, Lupas A N. 2006. Comparative analysis of coiled-coil prediction methods. J Struct Biol, 155 (2): 140-145.
        doi: 10.1016/j.jsb.2006.03.009

    25. Herniou E A, Olszewski J A, O'Reilly D R, et al. 2004. Ancient coevolution of baculoviruses and their insect hosts. J Virol, 78 (7): 3244-3251.
        doi: 10.1128/JVI.78.7.3244-3251.2004

    26. Hess R T, Falcon L A. 1978. Electron microscope observations of the membrane surrounding polyhedral inclusion bodies of insects. Arch Virol, 56 (1-2): 169-176.
        doi: 10.1007/BF01317292

    27. Holt M R, Koffer A. 2001. Cell motility: proline-rich proteins promote protrusions. Trends Cell Biol, 11 (1): 38-46.
        doi: 10.1016/S0962-8924(00)01876-6

    28. Jarvis D L, Bohlmeyer D A, Jr. Garcia A. 1991. Requirements for nuclear localization and supramolecular assembly of a baculovirus polyhedrin protein. Virology, 185 (2): 795-810.
        doi: 10.1016/0042-6822(91)90551-L

    29. Jehle J A, Lange M, Wang H, et al. 2006. Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology, 346 (1): 180-193.
        doi: 10.1016/j.virol.2005.10.032

    30. Katsuki M, Tokuraku K, Murofushi H, et al. 1999. Functional analysis of microtubule-binding domain of bovine MAP4. Cell Struct Funct, 24 (5): 337-344.
        doi: 10.1247/csf.24.337

    31. Kim Y, Chang S. 2006. Ever-expanding network of dynamin-interacting proteins. Mol Neurobiol, 34 (2): 129-136.
        doi: 10.1385/MN:34:2

    32. Knudson D L, Harrap K A. 1975. Replication of nuclear polyhedrosis virus in a continuous cell culture of Spodoptera frugiperda: microscopy study of the sequence of events of the virus infection. J Virol, 17 (1): 254-268.

    33. Kuzio J, Rohel D Z, Curry C J, et al. 1984. Nucleotide sequence of the p10 polypeptide gene of Autographa californica nuclear polyhedrosis virus. Virology, 139: 414-418.
        doi: 10.1016/0042-6822(84)90388-X

    34. Lee G, Cowan N, Kirschner M. 1988. The primary structure and heterogeneity of tau protein from mouse brain. Science, 239 (4837): 285-288.
        doi: 10.1126/science.3122323

    35. Lee S Y, Poloumienko A, Belfry S, et al. 1996. A common pathway for p10 and calyx proteins in progressive stages of polyhedron envelope assembly in AcMNPV-infected Spodoptera frugiperda larvae. Arch Virol, 141 (7): 1247-1258.
        doi: 10.1007/BF01718828

    36. Lewis S A, Wang D H, Cowan N J. 1988. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science, 242 (4880): 936-939.
        doi: 10.1126/science.3142041

    37. Li S S. 2005. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and impli-cations for cellular signal transduction. Biochem J, 390 (Pt 3): 641-653.

    38. Li Y, Miller L K. 1995. Properties of a baculovirus mutant defective in the protein phosphatase gene. J Virol, 69 (7): 4533-4537.

    39. Lupas A N, Gruber M. 2005. The structure of alpha-helical coiled coils. Adv Protein Chem, 70: 37-78.
        doi: 10.1016/S0065-3233(05)70003-6

    40. Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science, 252 (5010): 1162-1164.

    41. MacKinnon E A, Henderson J F, Stoltz D B, et al. 1974. Morphogenesis of nuclear polyhedrosis virus under con-ditions of prolonged passage in vitro. J Ultrastruct Res, 49 (3): 419-435.
        doi: 10.1016/S0022-5320(74)90055-0

    42. Meggio F, Pinna L A. 2003. One-thousand-and-one substrates of protein kinase CK2? Faseb J, 17 (3): 349-368.
        doi: 10.1096/fj.02-0473rev

    43. Melki R, Kerjan P, Waller J P, et al. 1991. Interaction of microtubule-associated proteins with microtubules: yeast lysyl-and valyl-tRNA synthetases and tau 218-235 synthetic peptide as model systems. Biochemistry, 30 (49): 11536-11545.
        doi: 10.1021/bi00113a008

    44. Nguyen M, Fasold H. 1991. A strongly basic protein of the MAP2 family copolymerizes with tubulin and induces polymerization. J Protein Chem, 10 (5): 511-516.
        doi: 10.1007/BF01025479

    45. Offer G, Hicks M R, Woolfson D N. 2002. Generalized Crick equations for modeling noncanonical coiled coils. J Struct Biol, 137 (1-2): 41-53.
        doi: 10.1006/jsbi.2002.4448

    46. Patmanidi A L, Possee R D, King L A. 2003. Formation of P10 tubular structures during AcMNPV infection depends on the integrity of host-cell microtubules. Virology, 317 (2): 308-320.
        doi: 10.1016/j.virol.2003.08.035

    47. Preuss U, Biernat J, Mandelkow E M, et al. 1997. The 'jaws' model of tau-microtubule interaction examined in CHO cells. J Cell Sci, 110 (Pt 6): 789-800.

    48. Quant-Russell R L, Pearson M N, Rohrmann G F, et al. 1987. Characterization of baculovirus p10 synthesis using monoclonal antibodies. Virology, 160 (1): 9-19.
        doi: 10.1016/0042-6822(87)90038-9

    49. Rogers S, Wells R, Rechsteiner M. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science, 234 (4774): 364-368.
        doi: 10.1126/science.2876518

    50. Rohel D Z, Cochran M A, Faulkner P. 1983. Characterization of two abundant mRNAs of Autographa californica nuclear polyhedrosis virus present late in infection. Virology, 124 (2): 357-365.
        doi: 10.1016/0042-6822(83)90352-5

    51. Rohel D Z, Faulkner P. 1984. Time Course Analysis and Mapping of Autographa californica Nuclear Polyhedrosis Virus Transcripts. J Virol, 50 (3): 739-747.

    52. Smith G E, Fraser M J, Summers M D. 1983. Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations Within the Polyhedrin Gene. J Virol, 46(2):584-593.

    53. Sparks A B, Rider J E, Kay B K. 1998. Mapping the specificity of SH3 domains with phage-displayed random-peptide libraries. Methods Mol Biol, 84: 87-103.

    54. Summers M D, Arnott H J. 1969. Ultrastructural studies on inclusion formation and virus occlusion in nuclear polyhedrosis and granulosis virus-infected cells of Tricho-plusia ni (Hubner). J Ultrastruct Res, 28 (5): 462-480.

    55. Van der Wilk F, Van Lent J W M, Vlak J M. 1987. Immunogold detection of polyhedrin, p10 and virion antigens in Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells. J Gen Virol, 68: 2615-2623.
        doi: 10.1099/0022-1317-68-10-2615

    56. Van Oers M M, Flipsen J T, Reusken C B, et al. 1993. Functional domains of the p10 protein of Autographa californica nuclear polyhedrosis virus. J Gen Virol, 74 (Pt 4): 563-574.

    57. Van Oers M M, Flipsen J T, Reusken CB, et al. 1994. Specificity of baculovirus p10 functions. Virology, 200 (2): 513-23.
        doi: 10.1006/viro.1994.1214

    58. Van Oers M M, Vlak J M. 1997. The baculovirus 10-kDa protein. J Invertebr Pathol, 70 (1): 1-17.
        doi: 10.1006/jipa.1997.4675

    59. Vlak J M, Klinkenberg F A, Zaal K J, et al. 1988. Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-beta-galactosidase fusion gene. J Gen Virol, 69 (Pt 4): 765-776.

    60. Vlak J M, Smith G E, Summers M D. 1981. Hybridi-zation Selection and In Vitro Translation of Autographa californica Nuclear Polyhedrosis Virus mRNA. J Virol, 40 (3): 762-771.

    61. Volkman L E, Zaal K J. 1990. Autographa californica M nuclear polyhedrosis virus: microtubules and replication. Virology, 175 (1): 292-302.
        doi: 10.1016/0042-6822(90)90211-9

    62. Walshaw J, Woolfson D N. 2001. Open-and-shut cases in coiled-coil assembly: alpha-sheets and alpha-cylinders. Protein Sci, 10 (3): 668-673.
        doi: 10.1110/ps.36901

    63. Williams G V, Rohel D Z, Kuzio J, et al. 1989. A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion/ deletion mutants. J Gen Virol, 70 (Pt 1): 187-202.

    64. Wilson J A, Hill J E, Kuzio J, et al. 1995. Characterization of the baculovirus Choristoneura fumiferana multicapsid nuclear polyhedrosis virus p10 gene indicates that the polypeptide contains a coiled-coil domain. J Gen Virol, 76 (Pt 12): 2923-2932.

    65. Zanotto P M, Kessing B D, Maruniak J E. 1993. Phylogenetic interrelationships among baculoviruses: evo-lutionary rates and host associations. J Invertebr Pathol, 62 (2): 147-164.
        doi: 10.1006/jipa.1993.1090

    66. Zetina C R. 2001. A conserved helix-unfolding motif in the naturally unfolded proteins. Proteins, 44 (4): 479-483.
        doi: 10.1002/(ISSN)1097-0134

  • 加载中

Figures(7)

Article Metrics

Article views(5316) PDF downloads(17) Cited by()

Related
Proportional views

    The Long Road to Understanding the Baculovirus P10 Protein

      Corresponding author: Linda A. King, laking@brookes.ac.uk
    • School of Life Sciences, Oxford Brookes University, Headington Campus, Oxford, United Kingdom

    Abstract: The baculovirus P10 protein has always represented a mystery in the field of insect virology. Like the baculovirus polyhedrin protein it is expressed at high levels very late in infection. Homologues of the Autographa californica nucleopolyhedrovirus p10 gene are conserved in all Alphabaculoviruses and in other viruses of lepidopteran hosts yet is completely dispensable for virus replication and transmission. P10 is a microtubule interacting protein whose expression has been associated with the formation of a variety of complex and extensive cytoplasmic and nuclear structures. P10 has been associated with a number of roles during infection ranging from the formation of virus occlusion bodies, to affecting the rate of cellular and/or nuclear lysis during the final stages of the virus replication cycle. In this article we review recent work aimed at understanding the role of this enigmatic protein, putting them into context with recent advances in understanding of protein structure and function. We look back at a number of historical studies and observations, reanalysing their conclusions based on recent data and our own observations. The role of the P10 protein during baculovirus replication remains elusive, however, novel avenues of investigation have been identified that will, we are sure, eventually lead to an understanding of this protein.