Citation: Jia LIU, Yan YANG, Bin HU, Zhi-yong MA, Hong-ping HUANG, Yuan YU, Shen-pei LIU, Meng-ji LU, Dong-liang YANG. Development of HBsAg-Binding Aptamers that bind HepG2.2.15 cells via HBV surface antigen .VIROLOGICA SINICA, 2010, 25(1) : 27-35.  http://dx.doi.org/10.1007/s12250-010-3091-7

Development of HBsAg-Binding Aptamers that bind HepG2.2.15 cells via HBV surface antigen

  • Corresponding author: Yan YANG, yyang@tjh.tjmu.edu.cn
  • Received Date: 24 July 2009
    Accepted Date: 09 October 2009
    Available online: 01 February 2010

    Fund Project: National Natural Science Foundation of China 30700701National High Technology Research and Development program of China 2006AA02Z128National Mega Research Program of China 2008ZX10002-011

  • Hepatitis B virus surface antigen (HBsAg), a specific antigen on the membrane of Hepatitis B virus (HBV)-infected cells, provides a perfect target for therapeutic drugs. The development of reagents with high affinity and specificity to the HBsAg is of great significance to the early-stage diagnosis and treatment of HBV infection. Herein, we report the selection of RNA aptamers that can specifically bind to HBsAg protein and HBsAg-positive hepatocytes. One high affinity aptamer, HBs-A22, was isolated from an initial 115 mer library of ~1.1×1015 random-sequence RNA molecules using the SELEX procedure. The selected aptamer HBs-A22 bound specifically to hepatoma cell line HepG2.2.15 that expresses HBsAg but did not bind to HBsAg-devoid HepG2 cells. This is the first reported RNA aptamer which could bind to a HBV specific antigen. This newly isolated aptamer could be modified to deliver imaging, diagnostic, and therapeutic agents targeted at HBV-infected cells.

  • 加载中
    1. Bock L C, Griffin L C, Latham J A, et al. 1992. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355 (6360): 564-566.
        doi: 10.1038/355564a0

    2. Brody E N, Gold L. 2000. Aptamers as therapeutic and diagnostic agents. J Biotechnol, 74 (1): 5-13.

    3. Chapman J A, Beckey C. 2006. Pegaptanib: A novel approach to ocular neovascularization. Ann Pharmacother, 40 (7-8): 1322-1326.
        doi: 10.1345/aph.1G604

    4. Chu C M, Liaw Y F. 1987. Intrahepatic distribution of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/mem-branous hepatitis B core antigen as a possible target for immune hepatocytolysis. Gastroenterology, 92: 220-225.
        doi: 10.1016/0016-5085(87)90863-8

    5. Chu T C, Twu K Y, Ellington A D, et al. 2006. Aptamer mediated siRNA delivery. Nucleic Acids Res, 34 (10): e73.
        doi: 10.1093/nar/gkl388

    6. Connell G J, Illangesekare M, Yarus M. 1993. Three small ribooligonucleotides with specific arginine sites. Biochemistry, 1; 32 (21): 5497-502.

    7. Dienstag J L. 2006. Looking to the future: new agents for chronic hepatitis B. Am J Gastroenterol, 101: S19-S25.
        doi: 10.1111/ajg.2006.101.issue-s1

    8. Ellington A D, Szostak J W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature, 30; 346 (6287): 818-822.

    9. Gish R G. 2005. Current treatment and future directions in the management of chronic hepatitis B viral infection. Clin Liver Dis, 9: 541-565.
        doi: 10.1016/j.cld.2005.08.005

    10. Guan R. 2005. Treatment of chronic hepatitis B infection using interferon. Med J Malaysia, 60: 28-33.

    11. Hicke B J, Marion C, Chang Y F, et al. 2001. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem, 28; 276 (52): 48644-48654.

    12. Hicke B J, Stephens A W. 2000. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest, 106 (8): 923-928.
        doi: 10.1172/JCI11324

    13. Jayasena S D. 1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem, 45 (9): 1628-1650.

    14. Jenison R D, Jennings S D, Walker D W, et al. 1998. Oligonucleotide inhibitors of P-selectin-dependent neutrophil-platelet adhesion, Antisense Nucleic Acid Drug Dev, 8 (4): 265-279.
        doi: 10.1089/oli.1.1998.8.265

    15. Khaled A, Guo S, Li F, et al. 2005. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Letters, 5 (9): 1797-1808.
        doi: 10.1021/nl051264s

    16. Kojima T. 1982. Immune electron microscopic study of hepatitis B virus associated antigens in hepatocytes. Gastroenterol Jpn, 17: 559-575.

    17. Liu C J, Liou J M, Chen D S, et al. 2005. Natural course and treatment of dual hepatitis B virus and hepatitis C virus infections. J Formos Med Assoc, 104: 783-791.

    18. Marcellin P, Asselah T, Boyer N. 2005. Treatment of chronic hepatitis B. J Viral Hepat, 12: 333-345.
        doi: 10.1111/jvh.2005.12.issue-4

    19. McNamara J O 2nd, Andrechek E R, Wang Y, et al. 2006. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol, 24 (8): 1005-1015.
        doi: 10.1038/nbt1223

    20. Ng E W, Shima D T, Calias P, et al. 2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 5 (2): 123-132.
        doi: 10.1038/nrd1955

    21. Ocama P, Opio C K, Lee W M. 2005. Hepatitis B virus infection: current status. Am J Med, 118: 1413.

    22. Onishi S, Saibara T, Ito K. 1985. Hepatitis B surface antigen specific cytotoxic T lymphocyte activity in hepatitis B virus infection. Gastroenterol Jpn, 20: 330-337.

    23. Pagratis N C, Bell C, Chang Y F, et al. 1997. Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol, 15 (1): 68-73.
        doi: 10.1038/nbt0197-68

    24. Perrillo R P. 2005. Current treatment of chronic hepatitis B: benefits and limitations. Semin Liver Dis, 25: 20-28.
        doi: 10.1055/s-2005-915647

    25. Rhodes A, Deakin A, Spaull J, et al. 2000. The generation and characterization of antagonist RNA aptamers to human oncostatin M. J Biol Chem, 275 (37): 28555-28561.
        doi: 10.1074/jbc.M002981200

    26. Rhodes A, Smithers N, Chapman T, et al. 2001. The generation and characterisation of antagonist RNA aptamers to MCP-1. FEBS Lett, 506 (2): 85-90.
        doi: 10.1016/S0014-5793(01)02895-2

    27. Rivkin A. 2005. A review of entecavir in the treatment of chronic hepatitis B infection. Curr Med Res Opin, 21: 1845-1856.
        doi: 10.1185/030079905X65268

    28. Ruckman J, Green L S, Beeson J, et al. 1998. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem, 273 (32): 20556-20567.
        doi: 10.1074/jbc.273.32.20556

    29. Rusconi C P, Scardino E, Layzer J, et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature. 2002; 419 (6902): 90-94.
        doi: 10.1038/nature00963

    30. Sasaki H, Kojima T, Matsui S, et al. 1987. Interaction of lymphocytes with hepatocytes containing hepatitis B antigen: ultrastructural demonstration of target antigen andT-cell subsets by the peroxidase antibody technique. Virchows Arch A Pathol Anat Histopathol, 411: 489-498.
        doi: 10.1007/BF00735232

    31. Shu D, Guo P. 2003. A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX. J Biol Chem, 278 (9): 7119-7125.
        doi: 10.1074/jbc.M209895200

    32. Simon K, Lingappa V R, Ganem D. 1988. Secreted hepatitis B surface antigen polypeptides are derived from a transmembrane precursor. J Cell Biol, 107: 2163-2168.
        doi: 10.1083/jcb.107.6.2163

    33. Tian Y, Adya N, Wagner S, et al. 1995. Dissecting protein:protein interactions between transcription factors with an RNA aptamer. RNA, 1 (3): 317-326.

    34. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 3; 249 (4968): 505-510.

    35. Watson S R, Chang Y F, O'Connell D, et al. 2000. Anti-L-selectin aptamers: binding characteristics, phar-macokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev, 10 (2): 63-75.
        doi: 10.1089/oli.1.2000.10.63

    36. Wiegand T W, Williams P B, Dreskin S C, et al. 1996. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol, 157 (1): 221-230.

    37. Wright T L. 2006. Introduction to chronic hepatitis B infection. Am J Gastroenterol, 101: S1-S6.
        doi: 10.1111/ajg.2006.101.issue-s1

  • 加载中

Figures(6)

Article Metrics

Article views(5358) PDF downloads(20) Cited by()

Related
Proportional views

    Development of HBsAg-Binding Aptamers that bind HepG2.2.15 cells via HBV surface antigen

      Corresponding author: Yan YANG, yyang@tjh.tjmu.edu.cn
    • 1. Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
    • 2. Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
    • 3. Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
    • 4. Institute of Virology, Medical School of Duisburg-Essen University, Essen, 45122, Germany
    Fund Project:  National Natural Science Foundation of China 30700701National High Technology Research and Development program of China 2006AA02Z128National Mega Research Program of China 2008ZX10002-011

    Abstract: Hepatitis B virus surface antigen (HBsAg), a specific antigen on the membrane of Hepatitis B virus (HBV)-infected cells, provides a perfect target for therapeutic drugs. The development of reagents with high affinity and specificity to the HBsAg is of great significance to the early-stage diagnosis and treatment of HBV infection. Herein, we report the selection of RNA aptamers that can specifically bind to HBsAg protein and HBsAg-positive hepatocytes. One high affinity aptamer, HBs-A22, was isolated from an initial 115 mer library of ~1.1×1015 random-sequence RNA molecules using the SELEX procedure. The selected aptamer HBs-A22 bound specifically to hepatoma cell line HepG2.2.15 that expresses HBsAg but did not bind to HBsAg-devoid HepG2 cells. This is the first reported RNA aptamer which could bind to a HBV specific antigen. This newly isolated aptamer could be modified to deliver imaging, diagnostic, and therapeutic agents targeted at HBV-infected cells.