Citation: Wei-wei Pan, Jing Long, Jun-ji Xing, Chun-fu Zheng. Molecular Determinants Responsible for the Subcellular Localization of HSV-1 UL4 Protein .VIROLOGICA SINICA, 2011, 26(5) : 347-356.  http://dx.doi.org/10.1007/s12250-011-3217-6

Molecular Determinants Responsible for the Subcellular Localization of HSV-1 UL4 Protein

  • Corresponding author: Chun-fu Zheng, zhengcf@wh.iov.cn
  • Received Date: 04 August 2011
    Accepted Date: 05 September 2011
    Available online: 01 October 2011

    Fund Project: the National Natural Science Foundation of China 30870120the National Natural Science Foundation of China 81000736the National Natural Science Foundation of China 30900059the Start-up Fund of the Hundred Talents Program of the Chinese Academy of Sciences 20071010-141Major State Basic Research Development Program of China 2010CB530105Major State Basic Research Development Program of China 2011CB504802

  • The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis.

  • 加载中
    1. Baines J D, Roizman B. 1991. The open reading frames ul3, ul4, ul10, and ul16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J Virol, 65(2): 938-944.

    2. Baines J D, Ward P L, Campadelli-Fiume G, et al. 1991. The ul20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J Virol, 65(12): 6414-6424.

    3. Davison A J, Scott J E. 1986. The complete DNA sequence of varicella-zoster virus. J Gen Virol, 67: 1759-1816.
        doi: 10.1099/0022-1317-67-9-1759

    4. Day R N, Schaufele F. 2008. Fluorescent protein tools for studying protein dynamics in living cells: A review. J Biomed Opt, 13(3): 031202.
        doi: 10.1117/1.2939093

    5. Dean H J, Cheung A K. 1994. Identification of the pseudorabies virus ul4 and ul5 (helicase) genes. Virology, 202(2): 962-967.
        doi: 10.1006/viro.1994.1419

    6. Ding Q, Guo H, Lin F, et al. 2010.Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res, 149(1): 95-103.
        doi: 10.1016/j.virusres.2010.01.009

    7. Eide T, Marsden H S, Leib D A, et al. 1998. Identification of the ul4 protein of herpes simplex virus type 1. J Gen Virol, 79: 3033-3038.
        doi: 10.1099/0022-1317-79-12-3033

    8. Fuchs W, Granzow H, Klopfleisch R, et al. 2006. The ul4 gene of pseudorabies virus encodes a minor infected-cell protein that is dispensable for virus replication. J Gen Virol, 87: 2517-2525.
        doi: 10.1099/vir.0.81813-0

    9. Ghildyal R, Ho A, Dias M, et al. 2009. The respiratory syncytial virus matrix protein possesses a crm1-mediated nuclear export mechanism. J Virol, 83(11): 5353-5362.
        doi: 10.1128/JVI.02374-08

    10. Gorlich D, Mattaj I W. 1996. Nucleocytoplasmic transport. Science, 271(5255): 1513-1518.
        doi: 10.1126/science.271.5255.1513

    11. Guo H, Ding Q, Lin F, et al. 2009. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res, 145(2): 312-320.
        doi: 10.1016/j.virusres.2009.07.024

    12. Heine J W, Honess R W, Cassai E, et al. 1974. Proteins specified by herpes simplex virus. Xii. The virion polypeptides of type 1 strains. J Virol, 14(3): 640-651.

    13. Honess R W, Roizman B. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol, 14(1): 8-19.

    14. Jahedi S, Markovitz N S, Filatov F, et al. 1999. Colocalization of the herpes simplex virus 1 μL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J Virol, 73(6): 5132-5138.

    15. Jun P Y, Strelow L I, Herman R C, et al. 1998. The μL4 gene of herpes simplex virus type 1 is dispensable for latency, reactivation and pathogenesis in mice. J Gen Virol, 79: 1603-1611.
        doi: 10.1099/0022-1317-79-7-1603

    16. Kalland K H, Szilvay A M, Brokstad K A, et al. 1994. The human immunodeficiency virus type 1 rev protein shuttles between the cytoplasm and nuclear compartments. Mol Cell Biol, 14(11): 7436-7444.
        doi: 10.1128/MCB.14.11.7436

    17. Kudo N, Wolff B, Sekimoto T, et al. 1998. Leptomycin b inhibition of signal-mediated nuclear export by direct binding to crm1. Exp Cell Res, 242(2): 540-547.
        doi: 10.1006/excr.1998.4136

    18. Longnecker R, Roizman B. 1986. Generation of an inverting herpes simplex virus 1 mutant lacking the l-s junction a sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein e and the alpha 47 gene. J Virol, 58(2): 583-591.

    19. Longnecker R, Roizman B. 1987. Clustering of genes dispensable for growth in culture in the s component of the hsv-1 genome. Science, 236(4801): 573-576.
        doi: 10.1126/science.3033823

    20. Longnecker R, Chatterjee S, Whitley R J, et al. 1987. Identification of a herpes simplex virus 1 glycoprotein gene within a gene cluster dispensable for growth in cell culture.Proc Natl Acad Sci U S A, 84(12): 4303-4307.
        doi: 10.1073/pnas.84.12.4303

    21. Markovitz N S, Roizman B. 2000. Small dense nuclear bodies are the site of localization of herpes simplex virus 1 u(l)3 and u(l)4 proteins and of icp22 only when the latter protein is present. J Virol, 74(1): 523-528.
        doi: 10.1128/JVI.74.1.523-528.2000

    22. Mattaj I W, Englmeier L. 1998. Nucleocytoplasmic trans port: The soluble phase. Annu Rev Biochem, 67: 265-306.
        doi: 10.1146/annurev.biochem.67.1.265

    23. McGeoch D J, Cunningham C, McIntyre G, et al. 1991. Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J Gen Virol, 72: 3057-3075.
        doi: 10.1099/0022-1317-72-12-3057

    24. McGeoch D J, Dalrymple M A, Davison A J, et al. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol, 69: 1531-1574.
        doi: 10.1099/0022-1317-69-7-1531

    25. Meignier B, Longnecker R, Mavromara-Nazos P, et al. 1988. Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1. Virology, 162(1): 251-254.
        doi: 10.1016/0042-6822(88)90417-5

    26. Meyer B E, Malim M H. 1994. The hiv-1 rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev, 8(13): 1538-1547.
        doi: 10.1101/gad.8.13.1538

    27. Meyer B E, Meinkoth J L, Malim M H. 1996. Nuclear transport of human immunodeficiency virus type 1, visna virus, and equine infectious anemia virus rev proteins: Identification of a family of transferable nuclear export signals. J Virol, 70(4): 2350-2359.

    28. Nakielny S, Dreyfuss G. 1997. Nuclear export of proteins and rnas. Curr Opin Cell Biol, 9(3): 420-429.
        doi: 10.1016/S0955-0674(97)80016-6

    29. Nishi K, Yoshida M, Fujiwara D, et al. 1994. Leptomycin b targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression.J Biol Chem, 269(9): 6320-6324.

    30. Rowland R R, Yoo D. 2003. Nucleolar-cytoplasmic shuttling of prrsv nucleocapsid protein: A simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res, 95(1-2): 23-33.
        doi: 10.1016/S0168-1702(03)00161-8

    31. Sears A E, Halliburton I W, Meignier B, et al. 1985. Herpes simplex virus 1 mutant deleted in the alpha 22 gene: Growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J Virol, 55(2): 338-346.

    32. Tanaka M, Kagawa H, Yamanashi Y, et al. 2003. Construction of an excisable bacterial artificial chromo some containing a full-length infectious clone of herpes simplex virus type 1: Viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol, 77(2): 1382-1391.
        doi: 10.1128/JVI.77.2.1382-1391.2003

    33. Telford E A, Watson M S, McBride K, et al. 1992. The DNA sequence of equine herpesvirus-1. Virology, 189(1): 304-316.
        doi: 10.1016/0042-6822(92)90706-U

    34. Ullman K S, Powers M A, Forbes D J. 1997. Nuclear export receptors: From importin to exportin. Cell, 90(6): 967-970.
        doi: 10.1016/S0092-8674(00)80361-X

    35. Vlcek C, Benes V, Lu Z, et al. 1995. Nucleotide sequence analysis of a 30-kb region of the bovine herpesvirus 1 genome which exhibits a colinear gene arrangement with the ul21 to ul4 genes of herpes simplex virus. Virology, 210(1): 100-108.
        doi: 10.1006/viro.1995.1321

    36. Ward P L, Taddeo B, Markovitz N S, et al. 2000. Identification of a novel expressed open reading frame situated between genes u(l)20 and u(l)21 of the herpes simplex virus 1 genome. Virology, 266(2): 275-285.
        doi: 10.1006/viro.1999.0081

    37. Weis K. 1998. Importins and exportins: How to get in and out of the nucleus. Trends Biochem Sci, 23(5): 185-189.
        doi: 10.1016/S0968-0004(98)01204-3

    38. Williams P, Verhagen J, Elliott G. 2008. Characterization of a crm1-dependent nuclear export signal in the c terminus of herpes simplex virus type 1 tegument protein ul47. J Virol, 82(21): 10946-10952.
        doi: 10.1128/JVI.01403-08

    39. Xing J, Wu F, Pan W, et al. 2010. Molecular anatomy of subcellular localization of hsv-1 tegument protein us11 in living cells. Virus Res, 153(1): 71-81.
        doi: 10.1016/j.virusres.2010.07.009

    40. Xing J, Wang S, Lin F, et al. 2011.Comprehensive characterization of interaction complexes of herpes simplex virus type 1 icp22, ul3, ul4, and ul20.5. J Virol, 85(4): 1881-1886.
        doi: 10.1128/JVI.01730-10

    41. Zheng C, Brownlie R, Babiuk L A, et al. 2005. Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 vp22. J Virol, 79(18): 11864-11872.
        doi: 10.1128/JVI.79.18.11864-11872.2005

  • 加载中

Figures(5)

Article Metrics

Article views(4219) PDF downloads(13) Cited by()

Related
Proportional views

    Molecular Determinants Responsible for the Subcellular Localization of HSV-1 UL4 Protein

      Corresponding author: Chun-fu Zheng, zhengcf@wh.iov.cn
    • Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
    Fund Project:  the National Natural Science Foundation of China 30870120the National Natural Science Foundation of China 81000736the National Natural Science Foundation of China 30900059the Start-up Fund of the Hundred Talents Program of the Chinese Academy of Sciences 20071010-141Major State Basic Research Development Program of China 2010CB530105Major State Basic Research Development Program of China 2011CB504802

    Abstract: The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis.