-
Annoni A, Goudy K, Akbarpour M, Naldini L, Roncarolo MG. 2013. Immune responses in liver-directed lentiviral gene therapy. Transl Res, 161: 230-240.
doi: 10.1016/j.trsl.2012.12.018
-
Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S. 2015. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng.
-
Asokan A, Schaffer DV, Samulski RJ. 2012. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther, 20: 699-708.
doi: 10.1038/mt.2011.287
-
Beck J, Nassal M. 2007. Hepatitis B virus replication. World J Gastroenterol, 13: 48-64.
doi: 10.3748/wjg.v13.i1.48
-
Chen J, Yuan Z. 2014. Interplay between hepatitis B virus and the innate immune responses: implications for new therapeutic strategies. Virol Sin, 29: 17-24.
doi: 10.1007/s12250-014-3412-3
-
Choi PS, Meyerson M. 2014. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun, 5: 3728.
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339: 819-823.
doi: 10.1126/science.1231143
-
Datta S, Chatterjee S, Veer V, Chakravarty R. 2012. Molecular biology of the hepatitis B virus for clinicians. J Clin Exp Hepatol, 2: 353-365.
doi: 10.1016/j.jceh.2012.10.003
-
Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. 2015. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res, 118: 110-117.
doi: 10.1016/j.antiviral.2015.03.015
-
Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346: 1258096.
-
Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M. 2006. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell, 22: 843-850.
doi: 10.1016/j.molcel.2006.04.025
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10: 1116-1121.
doi: 10.1038/nmeth.2681
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 31: 822-826.
doi: 10.1038/nbt.2623
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32: 279-284.
doi: 10.1038/nbt.2808
-
Ganem D, Varmus HE. 1987. The molecular biology of the hepatitis B viruses. Annu Rev Biochem, 56: 651-693.
doi: 10.1146/annurev.bi.56.070187.003251
-
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468: 67-71.
doi: 10.1038/nature09523
-
Gebbing M, Bergmann T, Schulz E, Ehrhardt A. 2015. Gene therapeutic approaches to inhibit hepatitis B virus replication. World J Hepatol, 7: 150-164.
-
Hadziyannis SJ. 2014. Update on Hepatitis B Virus Infection: Focus on Treatment. J Clin Transl Hepatol, 2: 285-291.
-
Haft DH, Selengut J, Mongodin EF, Nelson KE. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 1: e60.
doi: 10.1371/journal.pcbi.0010060
-
Hai H, Tamori A, Kawada N. 2014. Role of hepatitis B virus DNA integration in human hepatocarcinogenesis. World J Gastroenterol. 20: 6236-6243.
doi: 10.3748/wjg.v20.i20.6236
-
Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science, 327: 167-170.
doi: 10.1126/science.1179555
-
Isorce N, Lucifora J, Zoulim F, Durantel D. 2015. Immune-modulators to combat hepatitis B virus infection: From IFN-alpha to novel investigational immunotherapeutic strategies. Antiviral Res, 122: 69-81.
doi: 10.1016/j.antiviral.2015.08.008
-
Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ. 2010. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol, 17: 981-988.
doi: 10.1016/j.chembiol.2010.07.009
-
Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Luth S, Buchholz F, Schulze Zur Wiesch J, Hauber J. 2015. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep, 5: 13734.
doi: 10.1038/srep13734
-
Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR. 2015a. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology, 476: 196-205.
doi: 10.1016/j.virol.2014.12.001
-
Kennedy EM, Cullen BR. 2015. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology, 479-480: 213-220.
doi: 10.1016/j.virol.2015.02.024
-
Kennedy EM, Kornepati AV, Mefferd AL, Marshall JB, Tsai K, Bogerd HP, Cullen BR. 2015b. Optimization of a multiplex CRISPR/Cas for use as an antiviral therapeutic. Methods. pii: S1046-2023(15)30052-9
-
Komatsu H. 2014. Hepatitis B virus: where do we stand and what is the next step for eradication? World J Gastroenterol, 20: 8998-9016.
-
Koskella B. 2015. Research highlights for issue 6: the CRISPR/Cas revolution. Evol Appl, 8: 525-526.
doi: 10.1111/eva.12279
-
Koumbi L. 2015. Current and future antiviral drug therapies of hepatitis B chronic infection. World J Hepatol, 7: 1030-1040.
doi: 10.4254/wjh.v7.i8.1030
-
Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. 2009. Control of cccDNA function in hepatitis B virus infection. J Hepatol, 51: 581-592.
doi: 10.1016/j.jhep.2009.05.022
-
Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. 2014. The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Mol Ther Nucleic Acids, 3: e186.
doi: 10.1038/mtna.2014.38
-
Liu J, Kosinska A, Lu M, Roggendorf M. 2014. New therapeutic vaccination strategies for the treatment of chronic hepatitis B. Virol Sin, 29:10-16.
doi: 10.1007/s12250-014-3410-5
-
Liu X, Hao R, Chen S, Guo D, Chen Y. 2015. Inhibition of Hepatitis B Virus by CRISPR/Cas9 System via Targeting the Conserved Regions of Viral Genome. J Gen Virol.
-
Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Huser N, Durantel D, Liang TJ, Munk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. 2014. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science, 343: 1221-1228.
doi: 10.1126/science.1243462
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science, 339: 823-826.
doi: 10.1126/science.1232033
-
Matthews LA, Simmons LA. 2014. Bacterial nonhomologous end joining requires teamwork. J Bacteriol, 196: 3363-3365.
doi: 10.1128/JB.02042-14
-
Nassal M. 2015. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. pii: gutjnl-2015-309809.
-
Ohno M, Otsuka M, Kishikawa T, Yoshikawa T, Takata A, Koike K. 2015. Novel therapeutic approaches for hepatitis B virus covalently closed circular DNA. World J Gastroenterol, 21: 7084-7088.
doi: 10.3748/wjg.v21.i23.7084
-
Park YM, Jang JW, Yoo SH, Kim SH, Oh IM, Park SJ, Jang YS, Lee SJ. 2014. Combinations of eight key mutations in the X/preC region and genomic activity of hepatitis B virus are associated with hepatocellular carcinoma. J Viral Hepat, 21: 171-177.
doi: 10.1111/jvh.12134
-
Perkel J. 2015. CRISPR/Cas faces the bioethics spotlight. Biotechniques, 58: 223-227.
-
Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. 2015. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep, 5: 10833.
doi: 10.1038/srep10833
-
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520: 186-191.
doi: 10.1038/nature14299
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154: 1380-1389.
doi: 10.1016/j.cell.2013.08.021
-
Saayman S, Ali SA, Morris KV, Weinberg MS. 2015. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther, 15: 819-830.
doi: 10.1517/14712598.2015.1036736
-
Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR. 2012. Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol, 86: 8920-8936.
doi: 10.1128/JVI.00052-12
-
Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. 2015. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. pii: S0140-6736(15)61412-X.
-
Seeger C, Mason WS. 2015. Molecular biology of hepatitis B virus infection. Virology, 479-480: 672-686.
doi: 10.1016/j.virol.2015.02.031
-
Seeger C, Sohn JA. 2014. Targeting Hepatitis B Virus With CRISPR/Cas9. Mol Ther Nucleic Acids, 3: e216.
doi: 10.1038/mtna.2014.68
-
Sellmyer MA, Chen LC, Egeler EL, Rakhit R, Wandless TJ. 2012. Intracellular context affects levels of a chemically dependent destabilizing domain. PLoS One, 7: e43297.
doi: 10.1371/journal.pone.0043297
-
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343: 84-87.
doi: 10.1126/science.1247005
-
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC. 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods, 11: 399-402.
doi: 10.1038/nmeth.2857
-
Smith GR. 2001. Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genet, 35: 243-274.
doi: 10.1146/annurev.genet.35.102401.090509
-
Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR. 2015. Damaging the Integrated HIV Proviral DNA with TALENs. PLoS One, 10: e0125652.
doi: 10.1371/journal.pone.0125652
-
Tang H, Oishi N, Kaneko S, Murakami S. 2006. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci, 97: 977-983.
doi: 10.1111/cas.2006.97.issue-10
-
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32: 569-576.
doi: 10.1038/nbt.2908
-
van der Ploeg JR. 2009. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology, 155: 1966-1976.
doi: 10.1099/mic.0.027508-0
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153: 910-918.
doi: 10.1016/j.cell.2013.04.025
-
Wang J, Xu ZW, Liu S, Zhang RY, Ding SL, Xie XM, Long L, Chen XM, Zhuang H, Lu FM. 2015. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol, 21: 9554-9565.
doi: 10.3748/wjg.v21.i32.9554
-
Werle-Lapostolle B, Bowden S, Locarnini S, Wursthorn K, Petersen J, Lau G, Trepo C, Marcellin P, Goodman Z, Delaney WEt, Xiong S, Brosgart CL, Chen SS, Gibbs CS, Zoulim F. 2004. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology, 126: 1750-1758.
doi: 10.1053/j.gastro.2004.03.018
-
Wyman C, Kanaar R. 2006. DNA double-strand break repair: all' s well that ends well. Annu Rev Genet, 40: 363-383.
doi: 10.1146/annurev.genet.40.110405.090451
-
Xu T, Li Y, Van Nostrand JD, He Z, Zhou J. 2014. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol, 80: 1544-1552.
doi: 10.1128/AEM.03786-13
-
Yan H, Peng B, He W, Zhong G, Qi Y, Ren B, Gao Z, Jing Z, Song M, Xu G, Sui J, Li W. 2013. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol, 87: 7977-7991.
doi: 10.1128/JVI.03540-12
-
Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. 2014. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 3.
-
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154: 1370-1379.
doi: 10.1016/j.cell.2013.08.022
-
Yang HC, Kao JH. 2014. Persistence of hepatitis B virus covalently closed circular DNA in hepatocytes: molecular mechanisms and clinical significance. Emerg Microbes Infect, 3: e64.
doi: 10.1038/emi.2014.64
-
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 32: 551-553.
doi: 10.1038/nbt.2884
-
Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. 2015. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther, 22: 404-412.
doi: 10.1038/gt.2015.2
-
Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C. 2015. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, 12: 22.
doi: 10.1186/s12977-015-0150-z