Citation: Cheng Peng, Mengji Lu, Dongliang Yang. CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV .VIROLOGICA SINICA, 2015, 30(5) : 317-325.  http://dx.doi.org/10.1007/s12250-015-3660-x

CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV

  • Corresponding author: Dongliang Yang, dlyang@hust.edu.cn, ORCID: 0000-0001-5387-2660
  • Received Date: 29 September 2015
    Accepted Date: 14 October 2015
    Published Date: 22 October 2015
  • Hepatitis B virus (HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.

  • 加载中
    1. Annoni A, Goudy K, Akbarpour M, Naldini L, Roncarolo MG. 2013. Immune responses in liver-directed lentiviral gene therapy. Transl Res, 161: 230-240.
        doi: 10.1016/j.trsl.2012.12.018

    2. Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S. 2015. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng.

    3. Asokan A, Schaffer DV, Samulski RJ. 2012. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther, 20: 699-708.
        doi: 10.1038/mt.2011.287

    4. Beck J, Nassal M. 2007. Hepatitis B virus replication. World J Gastroenterol, 13: 48-64.
        doi: 10.3748/wjg.v13.i1.48

    5. Chen J, Yuan Z. 2014. Interplay between hepatitis B virus and the innate immune responses: implications for new therapeutic strategies. Virol Sin, 29: 17-24.
        doi: 10.1007/s12250-014-3412-3

    6. Choi PS, Meyerson M. 2014. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun, 5: 3728.

    7. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339: 819-823.
        doi: 10.1126/science.1231143

    8. Datta S, Chatterjee S, Veer V, Chakravarty R. 2012. Molecular biology of the hepatitis B virus for clinicians. J Clin Exp Hepatol, 2: 353-365.
        doi: 10.1016/j.jceh.2012.10.003

    9. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. 2015. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res, 118: 110-117.
        doi: 10.1016/j.antiviral.2015.03.015

    10. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346: 1258096.

    11. Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M. 2006. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell, 22: 843-850.
        doi: 10.1016/j.molcel.2006.04.025

    12. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10: 1116-1121.
        doi: 10.1038/nmeth.2681

    13. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 31: 822-826.
        doi: 10.1038/nbt.2623

    14. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32: 279-284.
        doi: 10.1038/nbt.2808

    15. Ganem D, Varmus HE. 1987. The molecular biology of the hepatitis B viruses. Annu Rev Biochem, 56: 651-693.
        doi: 10.1146/annurev.bi.56.070187.003251

    16. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468: 67-71.
        doi: 10.1038/nature09523

    17. Gebbing M, Bergmann T, Schulz E, Ehrhardt A. 2015. Gene therapeutic approaches to inhibit hepatitis B virus replication. World J Hepatol, 7: 150-164.

    18. Hadziyannis SJ. 2014. Update on Hepatitis B Virus Infection: Focus on Treatment. J Clin Transl Hepatol, 2: 285-291.

    19. Haft DH, Selengut J, Mongodin EF, Nelson KE. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 1: e60.
        doi: 10.1371/journal.pcbi.0010060

    20. Hai H, Tamori A, Kawada N. 2014. Role of hepatitis B virus DNA integration in human hepatocarcinogenesis. World J Gastroenterol. 20: 6236-6243.
        doi: 10.3748/wjg.v20.i20.6236

    21. Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science, 327: 167-170.
        doi: 10.1126/science.1179555

    22. Isorce N, Lucifora J, Zoulim F, Durantel D. 2015. Immune-modulators to combat hepatitis B virus infection: From IFN-alpha to novel investigational immunotherapeutic strategies. Antiviral Res, 122: 69-81.
        doi: 10.1016/j.antiviral.2015.08.008

    23. Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ. 2010. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol, 17: 981-988.
        doi: 10.1016/j.chembiol.2010.07.009

    24. Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Luth S, Buchholz F, Schulze Zur Wiesch J, Hauber J. 2015. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep, 5: 13734.
        doi: 10.1038/srep13734

    25. Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR. 2015a. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology, 476: 196-205.
        doi: 10.1016/j.virol.2014.12.001

    26. Kennedy EM, Cullen BR. 2015. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology, 479-480: 213-220.
        doi: 10.1016/j.virol.2015.02.024

    27. Kennedy EM, Kornepati AV, Mefferd AL, Marshall JB, Tsai K, Bogerd HP, Cullen BR. 2015b. Optimization of a multiplex CRISPR/Cas for use as an antiviral therapeutic. Methods. pii: S1046-2023(15)30052-9

    28. Komatsu H. 2014. Hepatitis B virus: where do we stand and what is the next step for eradication? World J Gastroenterol, 20: 8998-9016.

    29. Koskella B. 2015. Research highlights for issue 6: the CRISPR/Cas revolution. Evol Appl, 8: 525-526.
        doi: 10.1111/eva.12279

    30. Koumbi L. 2015. Current and future antiviral drug therapies of hepatitis B chronic infection. World J Hepatol, 7: 1030-1040.
        doi: 10.4254/wjh.v7.i8.1030

    31. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. 2009. Control of cccDNA function in hepatitis B virus infection. J Hepatol, 51: 581-592.
        doi: 10.1016/j.jhep.2009.05.022

    32. Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. 2014. The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Mol Ther Nucleic Acids, 3: e186.
        doi: 10.1038/mtna.2014.38

    33. Liu J, Kosinska A, Lu M, Roggendorf M. 2014. New therapeutic vaccination strategies for the treatment of chronic hepatitis B. Virol Sin, 29:10-16.
        doi: 10.1007/s12250-014-3410-5

    34. Liu X, Hao R, Chen S, Guo D, Chen Y. 2015. Inhibition of Hepatitis B Virus by CRISPR/Cas9 System via Targeting the Conserved Regions of Viral Genome. J Gen Virol.

    35. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Huser N, Durantel D, Liang TJ, Munk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. 2014. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science, 343: 1221-1228.
        doi: 10.1126/science.1243462

    36. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science, 339: 823-826.
        doi: 10.1126/science.1232033

    37. Matthews LA, Simmons LA. 2014. Bacterial nonhomologous end joining requires teamwork. J Bacteriol, 196: 3363-3365.
        doi: 10.1128/JB.02042-14

    38. Nassal M. 2015. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. pii: gutjnl-2015-309809.

    39. Ohno M, Otsuka M, Kishikawa T, Yoshikawa T, Takata A, Koike K. 2015. Novel therapeutic approaches for hepatitis B virus covalently closed circular DNA. World J Gastroenterol, 21: 7084-7088.
        doi: 10.3748/wjg.v21.i23.7084

    40. Park YM, Jang JW, Yoo SH, Kim SH, Oh IM, Park SJ, Jang YS, Lee SJ. 2014. Combinations of eight key mutations in the X/preC region and genomic activity of hepatitis B virus are associated with hepatocellular carcinoma. J Viral Hepat, 21: 171-177.
        doi: 10.1111/jvh.12134

    41. Perkel J. 2015. CRISPR/Cas faces the bioethics spotlight. Biotechniques, 58: 223-227.

    42. Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. 2015. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep, 5: 10833.
        doi: 10.1038/srep10833

    43. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520: 186-191.
        doi: 10.1038/nature14299

    44. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154: 1380-1389.
        doi: 10.1016/j.cell.2013.08.021

    45. Saayman S, Ali SA, Morris KV, Weinberg MS. 2015. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther, 15: 819-830.
        doi: 10.1517/14712598.2015.1036736

    46. Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR. 2012. Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol, 86: 8920-8936.
        doi: 10.1128/JVI.00052-12

    47. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. 2015. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. pii: S0140-6736(15)61412-X.

    48. Seeger C, Mason WS. 2015. Molecular biology of hepatitis B virus infection. Virology, 479-480: 672-686.
        doi: 10.1016/j.virol.2015.02.031

    49. Seeger C, Sohn JA. 2014. Targeting Hepatitis B Virus With CRISPR/Cas9. Mol Ther Nucleic Acids, 3: e216.
        doi: 10.1038/mtna.2014.68

    50. Sellmyer MA, Chen LC, Egeler EL, Rakhit R, Wandless TJ. 2012. Intracellular context affects levels of a chemically dependent destabilizing domain. PLoS One, 7: e43297.
        doi: 10.1371/journal.pone.0043297

    51. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343: 84-87.
        doi: 10.1126/science.1247005

    52. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC. 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods, 11: 399-402.
        doi: 10.1038/nmeth.2857

    53. Smith GR. 2001. Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genet, 35: 243-274.
        doi: 10.1146/annurev.genet.35.102401.090509

    54. Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR. 2015. Damaging the Integrated HIV Proviral DNA with TALENs. PLoS One, 10: e0125652.
        doi: 10.1371/journal.pone.0125652

    55. Tang H, Oishi N, Kaneko S, Murakami S. 2006. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci, 97: 977-983.
        doi: 10.1111/cas.2006.97.issue-10

    56. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32: 569-576.
        doi: 10.1038/nbt.2908

    57. van der Ploeg JR. 2009. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology, 155: 1966-1976.
        doi: 10.1099/mic.0.027508-0

    58. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153: 910-918.
        doi: 10.1016/j.cell.2013.04.025

    59. Wang J, Xu ZW, Liu S, Zhang RY, Ding SL, Xie XM, Long L, Chen XM, Zhuang H, Lu FM. 2015. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol, 21: 9554-9565.
        doi: 10.3748/wjg.v21.i32.9554

    60. Werle-Lapostolle B, Bowden S, Locarnini S, Wursthorn K, Petersen J, Lau G, Trepo C, Marcellin P, Goodman Z, Delaney WEt, Xiong S, Brosgart CL, Chen SS, Gibbs CS, Zoulim F. 2004. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology, 126: 1750-1758.
        doi: 10.1053/j.gastro.2004.03.018

    61. Wyman C, Kanaar R. 2006. DNA double-strand break repair: all' s well that ends well. Annu Rev Genet, 40: 363-383.
        doi: 10.1146/annurev.genet.40.110405.090451

    62. Xu T, Li Y, Van Nostrand JD, He Z, Zhou J. 2014. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol, 80: 1544-1552.
        doi: 10.1128/AEM.03786-13

    63. Yan H, Peng B, He W, Zhong G, Qi Y, Ren B, Gao Z, Jing Z, Song M, Xu G, Sui J, Li W. 2013. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol, 87: 7977-7991.
        doi: 10.1128/JVI.03540-12

    64. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. 2014. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 3.

    65. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154: 1370-1379.
        doi: 10.1016/j.cell.2013.08.022

    66. Yang HC, Kao JH. 2014. Persistence of hepatitis B virus covalently closed circular DNA in hepatocytes: molecular mechanisms and clinical significance. Emerg Microbes Infect, 3: e64.
        doi: 10.1038/emi.2014.64

    67. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 32: 551-553.
        doi: 10.1038/nbt.2884

    68. Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. 2015. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther, 22: 404-412.
        doi: 10.1038/gt.2015.2

    69. Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C. 2015. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, 12: 22.
        doi: 10.1186/s12977-015-0150-z

  • 加载中

Figures(2) / Tables(1)

Article Metrics

Article views(7730) PDF downloads(27) Cited by()

Related
Proportional views

    CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV

      Corresponding author: Dongliang Yang, dlyang@hust.edu.cn
    • 1. Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
    • 2. Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45122, Germany

    Abstract: Hepatitis B virus (HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.