Citation: Tanxiu Chen, Hao Yang, Penghui Liu, Moliduer Hamiti, Xintian Zhang, Yi Xu, Wenqi Quan, Yong Zhang, Wenhai Yu, Li Jiao, Tingfu Du, Juemin Xi, Bin Yin, Wei Zhou, Shuaiyao Lu, Xiaozhong Peng. Splicing factor SF3B3, a NS5-binding protein, restricts ZIKV infection by targeting GCH1 .VIROLOGICA SINICA, 2023, 38(2) : 222-232.  http://dx.doi.org/10.1016/j.virs.2022.12.005

Splicing factor SF3B3, a NS5-binding protein, restricts ZIKV infection by targeting GCH1

  • Zika virus (ZIKV), a positive-sense single-stranded RNA virus, causes congenital ZIKV syndrome in children and Guillain-Barré Syndrome (GBS) in adults. ZIKV expresses nonstructural protein 5 (NS5), a large protein that is essential for viral replication. ZIKV NS5 confers the ability to evade interferon (IFN) signalling; however, the exact mechanism remains unclear. In this study, we employed affinity pull-down and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and found that splicing factor 3b subunit 3 (SF3B3) is associated with the NS5-Flag pull-down complex through interaction with NS5. Functional assays showed that SF3B3 overexpression inhibited ZIKV replication by promoting IFN-stimulated gene (ISG) expression whereas silencing of SF3B3 inhibited expression of ISGs to promote ZIKV replication. GTP cyclohydrolase I (GCH1) is the first and rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis. NS5 upregulates the expression of GCH1 during ZIKV infection. And GCH1 marginally promoted ZIKV replication via the IFN pathway. Additionally, GCH1 expression is related to the regulation of SF3B3. Overexpression of the SF3B3 protein effectively reduced GCH1 protein levels, whereas SF3B3 knockdown increased its levels. These findings indicated that ZIKV NS5 binding protein SF3B3 contributed to the host immune response against ZIKV replication by modulating the expression of GCH1.

  • 加载中
    1. Barrows, N.J., Campos, R.K., Liao, K.C., Prasanth, K.R., Soto-Acosta, R., Yeh, S.C., Schott-Lerner, G., Pompon, J., Sessions, O.M., Bradrick, S.S.,Garcia-Blanco, M.A., 2018. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev, 118, 4448-4482.

    2. Best, S.M., 2017. The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling. J Virol, 91.

    3. Chen, J., Yang, Y.F., Yang, Y., Zou, P., Chen, J., He, Y., Shui, S.L., Cui, Y.R., Bai, R., Liang, Y.J., Hu, Y., Jiang, B., Lu, L., Zhang, X., Liu, J.,Xu, J., 2018. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat Microbiol, 3, 302-309.

    4. Chen, K., Xiao, H., Zeng, J., Yu, G., Zhou, H., Huang, C., Yao, W., Xiao, W., Hu, J., Guan, W., Wu, L., Huang, J., Huang, Q., Xu, H.,Ye, Z., 2017. Alternative Splicing of EZH2 pre-mRNA by SF3B3 Contributes to the Tumorigenic Potential of Renal Cancer. Clin Cancer Res, 23, 3428-3441.

    5. Chin, K.L., Zainal, N., Sam, S.S., Hassandarvish, P., Lani, R.,Abubakar, S., 2022. Intracellular translocation of HMGB1 is important for Zika virus replication in Huh7 cells. Sci Rep, 12, 1054.

    6. Diamond, M.S., 2009. Mechanisms of evasion of the type I interferon antiviral response by flaviviruses. J Interferon Cytokine Res, 29, 521-530.

    7. Fanunza, E., Grandi, N., Quartu, M., Carletti, F., Ermellino, L., Milia, J., Corona, A., Capobianchi, M.R., Ippolito, G.,Tramontano, E., 2021. INMI1 Zika Virus NS4B Antagonizes the Interferon Signaling by Suppressing STAT1 Phosphorylation. Viruses, 13.

    8. Finci, L.I., Zhang, X., Huang, X., Zhou, Q., Tsai, J., Teng, T., Agrawal, A., Chan, B., Irwin, S., Karr, C., Cook, A., Zhu, P., Reynolds, D., Smith, P.G., Fekkes, P., Buonamici, S.,Larsen, N.A., 2018. The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action. Genes Dev, 32, 309-320.

    9. Flory, C., Chan, K.W.K., Bifani, A.M., Choy, M.M.J., Lescar, J., Ooi, E.E., Tautz, N.,Vasudevan, S.G., 2021. Optimal flexibility of the linker region of Zika virus NS5 methyltransferase-polymerase is critical for virus replication. Antiviral Res, 195, 105194.

    10. Fontaine, K.A., Leon, K.E., Khalid, M.M., Tomar, S., Jimenez-Morales, D., Dunlap, M., Kaye, J.A., Shah, P.S., Finkbeiner, S., Krogan, N.J.,Ott, M., 2018. The Cellular NMD Pathway Restricts Zika Virus Infection and Is Targeted by the Viral Capsid Protein. mBio, 9.

    11. Gharbi-Ayachi, A., Santhanakrishnan, S., Wong, Y.H., Chan, K.W.K., Tan, S.T., Bates, R.W., Vasudevan, S.G., El Sahili, A.,Lescar, J., 2020. Non-nucleoside Inhibitors of Zika Virus RNA-Dependent RNA Polymerase. J Virol, 94.

    12. Guo, M., Hui, L., Nie, Y., Tefsen, B.,Wu, Y., 2021. ZIKV viral proteins and their roles in virus-host interactions. Sci China Life Sci, 64, 709-719.

    13. Hertzog, J., Dias Junior, A.G., Rigby, R.E., Donald, C.L., Mayer, A., Sezgin, E., Song, C., Jin, B., Hublitz, P., Eggeling, C., Kohl, A.,Rehwinkel, J., 2018. Infection with a Brazilian isolate of Zika virus generates RIG-I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signaling. Eur J Immunol, 48, 1120-1136.

    14. Huber, R.G., Lim, X.N., Ng, W.C., Sim, A.Y.L., Poh, H.X., Shen, Y., Lim, S.Y., Sundstrom, K.B., Sun, X., Aw, J.G., Too, H.K., Boey, P.H., Wilm, A., Chawla, T., Choy, M.M., Jiang, L., De Sessions, P.F., Loh, X.J., Alonso, S., Hibberd, M., Nagarajan, N., Ooi, E.E., Bond, P.J., Sessions, O.M.,Wan, Y., 2019. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat Commun, 10, 1408.

    15. Ivashkiv, L.B.,Donlin, L.T., 2014. Regulation of type I interferon responses. Nat Rev Immunol, 14, 36-49.

    16. Khairallah, A., Ross, C.J.,Tastan Bishop, O., 2021. GTP Cyclohydrolase I as a Potential Drug Target:New Insights into Its Allosteric Modulation via Normal Mode Analysis. J Chem Inf Model, 61, 4701-4719.

    17. Kovanich, D., Saisawang, C., Sittipaisankul, P., Ramphan, S., Kalpongnukul, N., Somparn, P., Pisitkun, T.,Smith, D.R., 2019. Analysis of the Zika and Japanese Encephalitis Virus NS5 Interactomes. J Proteome Res, 18, 3203-3218.

    18. Leonhard, S.E., Mandarakas, M.R., Gondim, F.a.A., Bateman, K., Ferreira, M.L.B., Cornblath, D.R., Van Doorn, P.A., Dourado, M.E., Hughes, R.a.C., Islam, B., Kusunoki, S., Pardo, C.A., Reisin, R., Sejvar, J.J., Shahrizaila, N., Soares, C., Umapathi, T., Wang, Y., Yiu, E.M., Willison, H.J.,Jacobs, B.C., 2019. Diagnosis and management of Guillain-Barre syndrome in ten steps. Nat Rev Neurol, 15, 671-683.

    19. Lesage, S., Chazal, M., Beauclair, G., Batalie, D., Cerboni, S., Couderc, E., Lescure, A., Del Nery, E., Tangy, F., Martin, A., Manel, N.,Jouvenet, N., 2022. Discovery of Genes that Modulate Flavivirus Replication in an Interferon-Dependent Manner. J Mol Biol, 434, 167277.

    20. Li, A., Wang, W., Wang, Y., Chen, K., Xiao, F., Hu, D., Hui, L., Liu, W., Feng, Y., Li, G., Tan, Q., Liu, Y., Wu, K.,Wu, J., 2020. NS5 Conservative Site Is Required for Zika Virus to Restrict the RIG-I Signaling. Front Immunol, 11, 51.

    21. Li, P., Jiang, H., Peng, H., Zeng, W., Zhong, Y., He, M., Xie, L., Chen, J., Guo, D., Wu, J.,Li, C.M., 2021. Non-Structural Protein 5 of Zika Virus Interacts with p53 in Human Neural Progenitor Cells and Induces p53-Mediated Apoptosis. Virol Sin, 36, 1411-1420.

    22. Limonta, D.,Hobman, T.C., 2020. Zika Virus and Host Interactions:From the Bench to the Bedside and Beyond. Cells, 9.

    23. Lin, S., Yang, L., Wang, S., Weng, B.,Lin, M., 2020. Bioinformatics Analysis of Key micro-RNAs and mRNAs under the Hand, Foot, and Mouth Disease Virus Infection. Pol J Microbiol, 69, 479-490.

    24. Mahony, R., Gargan, S., Roberts, K.L., Bourke, N., Keating, S.E., Bowie, A.G., O'farrelly, C.,Stevenson, N.J., 2017. A novel anti-viral role for STAT3 in IFN-alpha signalling responses. Cell Mol Life Sci, 74, 1755-1764.

    25. Miao, M., Yu, F., Wang, D., Tong, Y., Yang, L., Xu, J., Qiu, Y., Zhou, X.,Zhao, X., 2019. Proteomics Profiling of Host Cell Response via Protein Expression and Phosphorylation upon Dengue Virus Infection. Virol Sin, 34, 549-562.

    26. Musso, D.,Gubler, D.J., 2016. Zika Virus. Clin Microbiol Rev, 29, 487-524.

    27. Musso, D., Ko, A.I.,Baud, D., 2019. Zika Virus Infection-After the Pandemic. N Engl J Med, 381, 1444-1457.

    28. Nan, Y., Wu, C.,Zhang, Y.J., 2017. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front Immunol, 8, 1758.

    29. Ngono, A.E.,Shresta, S., 2018. Immune Response to Dengue and Zika. Annu Rev Immunol, 36, 279-308.

    30. Ren, K., Sun, H., Chen, L., Chen, N.,Yu, L., 2021. Myxovirus resistance protein A activates type I IFN signaling pathway to inhibit Zika virus replication. Virus Res, 306, 198534.

    31. Roby, J.A., Esser-Nobis, K., Dewey-Verstelle, E.C., Fairgrieve, M.R., Schwerk, J., Lu, A.Y., Soveg, F.W., Hemann, E.A., Hatfield, L.D., Keller, B.C., Shapiro, A., Forero, A., Stencel-Baerenwald, J.E., Savan, R.,Gale, M., Jr., 2020. Flavivirus Nonstructural Protein NS5 Dysregulates HSP90 to Broadly Inhibit JAK/STAT Signaling. Cells, 9.

    32. Sajidah, E.S., Lim, K.,Wong, R.W., 2021. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells, 10.

    33. Schilling, M., Bridgeman, A., Gray, N., Hertzog, J., Hublitz, P., Kohl, A.,Rehwinkel, J., 2020. RIG-I Plays a Dominant Role in the Induction of Transcriptional Changes in Zika Virus-Infected Cells, which Protect from Virus-Induced Cell Death. Cells, 9.

    34. Schreiber, C.A., Sakuma, T., Izumiya, Y., Holditch, S.J., Hickey, R.D., Bressin, R.K., Basu, U., Koide, K., Asokan, A.,Ikeda, Y., 2015. An siRNA Screen Identifies the U2 snRNP Spliceosome as a Host Restriction Factor for Recombinant Adeno-associated Viruses. PLoS Pathog, 11, e1005082.

    35. Shah, P.S., Link, N., Jang, G.M., Sharp, P.P., Zhu, T., Swaney, D.L., Johnson, J.R., Von Dollen, J., Ramage, H.R., Satkamp, L., Newton, B., Huttenhain, R., Petit, M.J., Baum, T., Everitt, A., Laufman, O., Tassetto, M., Shales, M., Stevenson, E., Iglesias, G.N., Shokat, L., Tripathi, S., Balasubramaniam, V., Webb, L.G., Aguirre, S., Willsey, A.J., Garcia-Sastre, A., Pollard, K.S., Cherry, S., Gamarnik, A.V., Marazzi, I., Taunton, J., Fernandez-Sesma, A., Bellen, H.J., Andino, R.,Krogan, N.J., 2018. Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 175, 1931-1945 e1918.

    36. Shan, C., Xie, X.,Shi, P.Y., 2018. Zika Virus Vaccine:Progress and Challenges. Cell Host Microbe, 24, 12-17.

    37. Shi, Y.,Gao, G.F., 2017. Structural Biology of the Zika Virus. Trends Biochem Sci, 42, 443-456.

    38. Song, W., Zhang, H., Zhang, Y., Chen, Y., Lin, Y., Han, Y.,Jiang, J., 2021. Identification and Characterization of Zika Virus NS5 Methyltransferase Inhibitors. Front Cell Infect Microbiol, 11, 665379.

    39. Stegeman, R., Spreacker, P.J., Swanson, S.K., Stephenson, R., Florens, L., Washburn, M.P.,Weake, V.M., 2016. The Spliceosomal Protein SF3B5 is a Novel Component of Drosophila SAGA that Functions in Gene Expression Independent of Splicing. J Mol Biol, 428, 3632-3649.

    40. Thurmond, S., Wang, B., Song, J.,Hai, R., 2018. Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses, 10.

    41. Uchida, Y., Watanabe, C., Takemae, N., Hayashi, T., Oka, T., Ito, T.,Saito, T., 2012. Identification of host genes linked with the survivability of chickens infected with recombinant viruses possessing H5N1 surface antigens from a highly pathogenic avian influenza virus. J Virol, 86, 2686-2695.

    42. Wang, B., Thurmond, S., Hai, R.,Song, J., 2018. Structure and function of Zika virus NS5 protein:perspectives for drug design. Cell Mol Life Sci, 75, 1723-1736.

    43. Wei, J.L., Wu, S.Y., Yang, Y.S., Xiao, Y., Jin, X., Xu, X.E., Hu, X., Li, D.Q., Jiang, Y.Z.,Shao, Z.M., 2021. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer, 9.

    44. Wei, X., Yi, X., Zhu, X.H.,Jiang, D.S., 2020. Posttranslational Modifications in Ferroptosis. Oxid Med Cell Longev, 2020, 8832043.

    45. Wilder-Smith, A.,Osman, S., 2020. Public health emergencies of international concern:a historic overview. J Travel Med, 27.

    46. Zhang, S., Zhang, J., An, Y., Zeng, X., Qin, Z., Zhao, Y., Xu, H.,Liu, B., 2021. Multi-omics approaches identify SF3B3 and SIRT3 as candidate autophagic regulators and druggable targets in invasive breast carcinoma. Acta Pharm Sin B, 11, 1227-1245.

    47. Zhao, B., Yi, G., Du, F., Chuang, Y.C., Vaughan, R.C., Sankaran, B., Kao, C.C.,Li, P., 2017. Structure and function of the Zika virus full-length NS5 protein. Nat Commun, 8, 14762.

    48. Zhao, Z., Tao, M., Han, W., Fan, Z., Imran, M., Cao, S.,Ye, J., 2021. Nuclear localization of Zika virus NS5 contributes to suppression of type I interferon production and response. J Gen Virol, 102.

    49. Zhu, S., Luo, H., Liu, H., Ha, Y., Mays, E.R., Lawrence, R.E., Winkelmann, E., Barrett, A.D., Smith, S.B., Wang, M., Wang, T.,Zhang, W., 2017. p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Muller cells following Zika virus infection. Antiviral Res, 145, 70-81.

  • 加载中

Article Metrics

Article views(1826) PDF downloads(23) Cited by()

Related
Proportional views

    Splicing factor SF3B3, a NS5-binding protein, restricts ZIKV infection by targeting GCH1

      Corresponding author: Shuaiyao Lu, lushuaiyao-km@163.com
      Corresponding author: Xiaozhong Peng, pengxiaozhong@pumc.edu.cn
    • a. Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China;
    • b. Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, 330029, China;
    • c. The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China

    Abstract: Zika virus (ZIKV), a positive-sense single-stranded RNA virus, causes congenital ZIKV syndrome in children and Guillain-Barré Syndrome (GBS) in adults. ZIKV expresses nonstructural protein 5 (NS5), a large protein that is essential for viral replication. ZIKV NS5 confers the ability to evade interferon (IFN) signalling; however, the exact mechanism remains unclear. In this study, we employed affinity pull-down and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and found that splicing factor 3b subunit 3 (SF3B3) is associated with the NS5-Flag pull-down complex through interaction with NS5. Functional assays showed that SF3B3 overexpression inhibited ZIKV replication by promoting IFN-stimulated gene (ISG) expression whereas silencing of SF3B3 inhibited expression of ISGs to promote ZIKV replication. GTP cyclohydrolase I (GCH1) is the first and rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis. NS5 upregulates the expression of GCH1 during ZIKV infection. And GCH1 marginally promoted ZIKV replication via the IFN pathway. Additionally, GCH1 expression is related to the regulation of SF3B3. Overexpression of the SF3B3 protein effectively reduced GCH1 protein levels, whereas SF3B3 knockdown increased its levels. These findings indicated that ZIKV NS5 binding protein SF3B3 contributed to the host immune response against ZIKV replication by modulating the expression of GCH1.

    Reference (49) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return