Citation: Changcheng Wu, Ruhan A, Sheng Ye, Fei Ye, Weibang Huo, Roujian Lu, Yue Tang, Jianwei Yang, Xuehong Meng, Yun Tang, Shuang Chen, Li Zhao, Baoying Huang, Zhongxian Zhang, Yuda Chen, Dongfang Li, Wenling Wang, Ke-jia Shan, Jian Lu, Wenjie Tan. Rapid identification of full-length genome and tracing variations of monkeypox virus in clinical specimens based on mNGS and amplicon sequencing .VIROLOGICA SINICA, 2024, 39(1) : 134-143.  http://dx.doi.org/10.1016/j.virs.2023.12.002

Rapid identification of full-length genome and tracing variations of monkeypox virus in clinical specimens based on mNGS and amplicon sequencing

  • Corresponding author: Jian Lu, luj@pku.edu.cn
    Wenjie Tan, tanwj@ivdc.chinacdc.cn
  • Received Date: 23 September 2023
    Accepted Date: 04 December 2023
    Available online: 07 December 2023
  • The monkeypox virus (MPXV) has triggered a current outbreak globally. Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control. It is a significant challenge but necessary to optimize the strategy and application of rapid full-length genome identification and to track variations of MPXV in clinical specimens with low viral loads, as it is one of the DNA viruses with the largest genome and the most AT-biased, and has a significant number of tandem repeats. Here we evaluated the performance of metagenomic and amplicon sequencing techniques, and three sequencing platforms in MPXV genome sequencing based on multiple clinical specimens of five mpox cases in Chinese mainland. We rapidly identified the full-length genome of MPXV with the assembly of accurate tandem repeats in multiple clinical specimens. Amplicon sequencing enables cost-effective and rapid sequencing of clinical specimens to obtain high-quality MPXV genomes. Third-generation sequencing facilitates the assembly of the terminal tandem repeat regions in the monkeypox virus genome and corrects a common misassembly in published sequences. Besides, several intra-host single nucleotide variations were identified in the first imported mpox case. This study offers an evaluation of various strategies aimed at identifying the complete genome of MPXV in clinical specimens. The findings of this study will significantly enhance the surveillance of MPXV.

  • 加载中
  • 10.1016j.virs.2023.12.002-ESM.docx
    1. Aksamentov, I., Roemer, C., Hodcroft, E.B.,Neher, R.A., 2021. Nextclade: clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software, 6, 3773.

    2. Aljabali, A.A., Obeid, M.A., Nusair, M.B., Hmedat, A.,Tambuwala, M.M., 2022. Monkeypox virus: An emerging epidemic. Microb Pathog, 173, 105794.

    3. Anwar, F.,Waris, A., 2022. Monkeypox virus outbreak: a brief timeline. New Microbes New Infect, 48, 101004.

    4. Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 27, 573-580.

    5. Bunge, E.M., Hoet, B., Chen, L., Lienert, F., Weidenthaler, H., Baer, L.R.,Steffen, R., 2022. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl Trop Dis, 16, e0010141.

    6. Charre, C., Ginevra, C., Sabatier, M., Regue, H., Destras, G., Brun, S., Burfin, G., Scholtes, C., Morfin, F., Valette, M., Lina, B., Bal, A.,Josset, L., 2020. Evaluation of NGS-based approaches for SARS-CoV-2 whole genome characterisation. Virus Evol, 6, veaa075.

    7. Chen, N.F.G., Chaguza, C., Gagne, L., Doucette, M., Smole, S., Buzby, E., Hall, J., Ash, S., Harrington, R., Cofsky, S., Clancy, S., Kapsak, C.J., Sevinsky, J., Libuit, K., Park, D.J., Hemarajata, P., Garrigues, J.M., Green, N.M., Sierra-Patev, S., Carpenter-Azevedo, K., Huard, R.C., Pearson, C., Incekara, K., Nishimura, C., Huang, J.P., Gagnon, E., Reever, E., Razeq, J., Muyombwe, A., Borges, V., Ferreira, R., Sobral, D., Duarte, S., Santos, D., Vieira, L., Gomes, J.P., Aquino, C., Savino, I.M., Felton, K., Bajwa, M., Hayward, N., Miller, H., Naumann, A., Allman, R., Greer, N., Fall, A., Mostafa, H.H., Mchugh, M.P., Maloney, D.M., Dewar, R., Kenicer, J., Parker, A., Mathers, K., Wild, J., Cotton, S., Templeton, K.E., Churchwell, G., Lee, P.A., Pedrosa, M., Mcgruder, B., Schmedes, S., Plumb, M.R., Wang, X., Barcellos, R.B., Godinho, F.M.S., Salvato, R.S., Ceniseros, A., Breban, M.I., Grubaugh, N.D., Gallagher, G.R.,Vogels, C.B.F., 2023. Development of an amplicon-based sequencing approach in response to the global emergence of mpox. PLoS Biol, 21, e3002151.

    8. Chen, S., Zhou, Y., Chen, Y.,Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884-i890.

    9. Chen, Y., Wu, C., A, R., Zhao, L., Zhang, Z.,Tan, W., 2023. Perspective on the application of genome sequencing for monkeypox virus surveillance. Virol Sin, 38, 327-333.

    10. Cingolani, P., Platts, A., Wang Le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X.,Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6, 80-92.

    11. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., Mccarthy, S.A., Davies, R.M.,Li, H., 2021. Twelve years of SAMtools and BCFtools. Gigascience, 10, giab008.

    12. Fuchs, J., Nekrutenko, A., Kohl, A.-K., Technau-Hafsi, K., Hornuß, D., Rieg, S., Jaki, L., Huzly, D., Maier, W., Grüning, B., Gutbrod, L., Falcone, V., Hengel, H.,Panning, M. 2022. Travel-associated Monkeypox virus genomes from two German patients and of a derived virus isolate all closely related to a US sequence, 2022 [Online]. Available: https://virological.org/t/travel-associated-monkeypox-virus-genomes-from-two-german-patients-and-of-a-derived-virus-isolate-all-closely-related-to-a-us-sequence-2022/844 [Accessed 03 June 2022].

    13. Gigante, C.M., Korber, B., Seabolt, M.H., Wilkins, K., Davidson, W., Rao, A.K., Zhao, H., Smith, T.G., Hughes, C.M., Minhaj, F., Waltenburg, M.A., Theiler, J., Smole, S., Gallagher, G.R., Blythe, D., Myers, R., Schulte, J., Stringer, J., Lee, P., Mendoza, R.M., Griffin-Thomas, L.A., Crain, J., Murray, J., Atkinson, A., Gonzalez, A.H., Nash, J., Batra, D., Damon, I., Mcquiston, J., Hutson, C.L., Mccollum, A.M.,Li, Y., 2022. Multiple lineages of monkeypox virus detected in the United States, 2021-2022. Science, 378, 560-565.

    14. Gohl, D.M., Garbe, J., Grady, P., Daniel, J., Watson, R.H.B., Auch, B., Nelson, A., Yohe, S.,Beckman, K.B., 2020. A rapid, cost-effective tailed amplicon method for sequencing SARS-CoV-2. BMC Genomics, 21, 863.

    15. Gorgé, O., Jarjaval, F., Nolent, F., Criqui, A., Lourenco, J., Badaoui, A., Khoury, R., Burrel, S.L., O., Chapus, C., Simon-Loriere, E., Tournier, J.N.,Ferraris, O. 2022. MinIon-produced Illumina-confirmed genomes of the two first isolated cases from France [Online]. Available: https://virological.org/t/minion-produced-illumina-confirmed-genomes-of-the-two-first-isolated-cases-from-france/868 [Accessed 17 June 2022].

    16. Hraib, M., Jouni, S., Albitar, M.M., Alaidi, S.,Alshehabi, Z., 2022. The outbreak of monkeypox 2022: An overview. Ann Med Surg (Lond), 79, 104069.

    17. Huo, S., Chen, Y., Lu, R., Zhang, Z., Zhang, G., Zhao, L., Deng, Y., Wu, C.,Tan, W., 2022. Development of two multiplex real-time PCR assays for simultaneous detection and differentiation of monkeypox virus IIa, IIb, and I clades and the B.1 lineage. Biosaf Health, 4, 392-398.

    18. Isidro, J., Borges, V., Pinto, M., Sobral, D., Santos, J.D., Nunes, A., Mixao, V., Ferreira, R., Santos, D., Duarte, S., Vieira, L., Borrego, M.J., Nuncio, S., De Carvalho, I.L., Pelerito, A., Cordeiro, R.,Gomes, J.P., 2022. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med, 28, 1569-1572.

    19. Ladnyj, I.D., Ziegler, P.,Kima, E., 1972. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ, 46, 593-597.

    20. Li, H.,Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760.

    21. Li, J., Du, P., Yang, L., Zhang, J., Song, C., Chen, D., Song, Y., Ding, N., Hua, M., Han, K., Song, R., Xie, W., Chen, Z., Wang, X., Liu, J., Xu, Y., Gao, G., Wang, Q., Pu, L., Di, L., Li, J., Yue, J., Han, J., Zhao, X., Yan, Y., Yu, F., Wu, A.R., Zhang, F., Gao, Y.Q., Huang, Y., Wang, J., Zeng, H.,Chen, C., 2022. Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Rep, 38, 110205.

    22. Liu, Q., Zhao, S., Shi, C.M., Song, S., Zhu, S., Su, Y., Zhao, W., Li, M., Bao, Y., Xue, Y.,Chen, H., 2020. Population Genetics of SARS-CoV-2: Disentangling Effects of Sampling Bias and Infection Clusters. Genomics Proteomics Bioinformatics, 18, 640-647.

    23. Lythgoe, K.A., Hall, M., Ferretti, L., De Cesare, M., Macintyre-Cockett, G., Trebes, A., Andersson, M., Otecko, N., Wise, E.L., Moore, N., Lynch, J., Kidd, S., Cortes, N., Mori, M., Williams, R., Vernet, G., Justice, A., Green, A., Nicholls, S.M., Ansari, M.A., Abeler-Dorner, L., Moore, C.E., Peto, T.E.A., Eyre, D.W., Shaw, R., Simmonds, P., Buck, D., Todd, J.A., Oxford Virus Sequencing Analysis, G., Connor, T.R., Ashraf, S., Da Silva Filipe, A., Shepherd, J., Thomson, E.C., Consortium, C.-G.U., Bonsall, D., Fraser, C.,Golubchik, T., 2021. SARS-CoV-2 within-host diversity and transmission. Science, 372, eabg0821

    24. Martínez-Puchol, S., Coello, A., Bordoy, A.E., Soler, L., Panisello, D., González-Gómez, S., Clarà, G., León, A.P.D., Not, A., Hernández, Á., Bofill-Mas, S., Saludes, V., Martró, E.,Cardona, P.J. 2022. Spanish draft genome sequence of Monkeypox virus related to multi-country outbreak (May 2022) [Online]. Available: https://virological.org/t/spanish-draft-genome-sequence-of-monkeypox-virus-related-to-multi-country-outbreak-may-2022/825 [Accessed 27 May 2022].

    25. Mckenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M.,Depristo, M.A., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20, 1297-1303.

    26. Monzón, S., Varona, S., Negredo, A., Patiño-Galindo, J.A., Vidal-Freire, S., Zaballos, A., Orviz, E., Ayerdi, O., Muñoz-García, A., Delgado-Iribarren, A., Estrada, V., García, C., Molero, F., Sánchez, P., Torres, M., Vázquez, A., Galán, J.-C., Torres, I., Causse Del Río, M., Merino, L., López, M., Galar, A., Cardeñoso, L., Gutiérrez, A., Loras, C., Escribano, I., Alvarez-Argüelles, M.E., Del Río, L., Simón, M., Meléndez, M.A., Camacho, J., Herrero, L., Sancho, P.J., Navarro-Rico, M.L., Kuhn, J.H., Sanchez-Lockhart, M., Paola, N.D., Kugelman, J.R., Giannetti, E., Guerra, S., García-Sastre, A., Palacios, G., Cuesta, I.,Sánchez-Seco, M.P., 2022. Changes in a new type of genomic accordion may open the pallets to increased monkeypox transmissibility. bioRxiv, 10.1101/2022.09.30.510261, 2022.2009.2030.510261.

    27. Nguyen, L.T., Schmidt, H.A., Von Haeseler, A.,Minh, B.Q., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 32, 268-274.

    28. Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A.V., Mikheenko, A., Vollger, M.R., Altemose, N., Uralsky, L., Gershman, A., Aganezov, S., Hoyt, S.J., Diekhans, M., Logsdon, G.A., Alonge, M., Antonarakis, S.E., Borchers, M., Bouffard, G.G., Brooks, S.Y., Caldas, G.V., Chen, N.C., Cheng, H., Chin, C.S., Chow, W., De Lima, L.G., Dishuck, P.C., Durbin, R., Dvorkina, T., Fiddes, I.T., Formenti, G., Fulton, R.S., Fungtammasan, A., Garrison, E., Grady, P.G.S., Graves-Lindsay, T.A., Hall, I.M., Hansen, N.F., Hartley, G.A., Haukness, M., Howe, K., Hunkapiller, M.W., Jain, C., Jain, M., Jarvis, E.D., Kerpedjiev, P., Kirsche, M., Kolmogorov, M., Korlach, J., Kremitzki, M., Li, H., Maduro, V.V., Marschall, T., Mccartney, A.M., Mcdaniel, J., Miller, D.E., Mullikin, J.C., Myers, E.W., Olson, N.D., Paten, B., Peluso, P., Pevzner, P.A., Porubsky, D., Potapova, T., Rogaev, E.I., Rosenfeld, J.A., Salzberg, S.L., Schneider, V.A., Sedlazeck, F.J., Shafin, K., Shew, C.J., Shumate, A., Sims, Y., Smit, A.F.A., Soto, D.C., Sovic, I., Storer, J.M., Streets, A., Sullivan, B.A., Thibaud-Nissen, F., Torrance, J., Wagner, J., Walenz, B.P., Wenger, A., Wood, J.M.D., Xiao, C., Yan, S.M., Young, A.C., Zarate, S., Surti, U., Mccoy, R.C., Dennis, M.Y., Alexandrov, I.A., Gerton, J.L., O'neill, R.J., Timp, W., Zook, J.M., Schatz, M.C., Eichler, E.E., Miga, K.H.,Phillippy, A.M., 2022. The complete sequence of a human genome. Science, 376, 44-53.

    29. Pathak, A.K., Mishra, G.P., Uppili, B., Walia, S., Fatihi, S., Abbas, T., Banu, S., Ghosh, A., Kanampalliwar, A., Jha, A., Fatma, S., Aggarwal, S., Dhar, M.S., Marwal, R., Radhakrishnan, V.S., Ponnusamy, K., Kabra, S., Rakshit, P., Bhoyar, R.C., Jain, A., Divakar, M.K., Imran, M., Faruq, M., Sowpati, D.T., Thukral, L., Raghav, S.K.,Mukerji, M., 2022. Spatio-temporal dynamics of intra-host variability in SARS-CoV-2 genomes. Nucleic Acids Res, 50, 1551-1561.

    30. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G.,Mesirov, J.P., 2011. Integrative genomics viewer. Nat Biotechnol, 29, 24-26.

    31. Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang, J., Williams, R., Trawick, B.W., Pruitt, K.D.,Sherry, S.T., 2021. Database resources of the national center for biotechnology information. Nucleic Acids Res., 50 , D10-D17.

    32. Shchelkunov, S.N., Totmenin, A.V., Safronov, P.F., Mikheev, M.V., Gutorov, V.V., Ryazankina, O.I., Petrov, N.A., Babkin, I.V., Uvarova, E.A., Sandakhchiev, L.S., Sisler, J.R., Esposito, J.J., Damon, I.K., Jahrling, P.B.,Moss, B., 2002. Analysis of the monkeypox virus genome. Virology, 297, 172-194.

    33. Shu, Y.L.,Mccauley, J., 2017. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill., 22, 2-4.

    34. Tan, W.,Gao, F.G., 2022. Perspectives: Neglected Zoonotic Monkeypox in Africa but Now Back in the Spotlight Worldwide. China CDC Weekly, 4, 2.

    35. Wang, Y., Wang, D., Zhang, L., Sun, W., Zhang, Z., Chen, W., Zhu, A., Huang, Y., Xiao, F., Yao, J., Gan, M., Li, F., Luo, L., Huang, X., Zhang, Y., Wong, S.S., Cheng, X., Ji, J., Ou, Z., Xiao, M., Li, M., Li, J., Ren, P., Deng, Z., Zhong, H., Xu, X., Song, T., Mok, C.K.P., Peiris, M., Zhong, N., Zhao, J., Li, Y., Li, J.,Zhao, J., 2021. Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Med, 13, 30.

    36. Wu, C., Cui, L., Pan, Y., Lv, Z., Yao, M., Wang, W., Ye, F., Huo, W., Zhao, L., Huang, B., Zhu, F., Lu, R., Deng, Y., Wang, W.,Tan, W., 2023. Characterization of whole genomes from recently emerging Mpox cases in several regions of China, 2023. Sci China Life Sci, https://doi.org/10.1007/s11427-023-2485-8.

    37. Wu, F., Oghuan, J., Gitter, A., Mena, K.D.,Brown, E.L., 2023. Wide mismatches in the sequences of primers and probes for monkeypox virus diagnostic assays. J Med Virol, 95, e28395.

    38. Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 24, 1586-1591.

    39. Yeh, T.-Y., Hsieh, Z.-Y., Feehley, M.C., Feehley, P.J., Contreras, G.P., Su, Y.-C., Hsieh, S.-L.,Lewis, D.A., 2022. Recombination shapes 2022 monkeypox outbreak. medRxiv, 10.1101/2022.08.09.22278589, 2022.2008.2009.22278589.

    40. Yu, G., Smith, D.K., Zhu, H., Guan, Y.,Lam, T.T.-Y., 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8, 28-36.

    41. Zhao, H., Wang, W., Zhao, L., Ye, S., Song, J., Lu, R., Zong, H., Wu, C., Huang, W., Huang, B., Deng, Y., A, R., Xie, W., Qi, L., Xu, W., Lin, H.,Tan, W., 2022. The First Imported Case of Monkeypox in the Mainland of China — Chongqing Municipality, China, September 16, 2022. China CDC Weekly, 4, 853-854.

  • 加载中

Article Metrics

Article views(2559) PDF downloads(12) Cited by()

Related
Proportional views

    Rapid identification of full-length genome and tracing variations of monkeypox virus in clinical specimens based on mNGS and amplicon sequencing

      Corresponding author: Jian Lu, luj@pku.edu.cn
      Corresponding author: Wenjie Tan, tanwj@ivdc.chinacdc.cn
    • a. NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China;
    • b. Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China;
    • c. MGI, BGI-Shenzhen, Shenzhen, 518083, China;
    • d. Thermo Fisher Scientific, Beijing, 100013, China;
    • e. School of Public Health, Baotou Medical College, Baotou, 014030, China;
    • f. BGI PathoGenesis Pharmaceutical Technology, Shenzhen, 518000, China;
    • g. State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China;
    • h. College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

    Abstract: The monkeypox virus (MPXV) has triggered a current outbreak globally. Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control. It is a significant challenge but necessary to optimize the strategy and application of rapid full-length genome identification and to track variations of MPXV in clinical specimens with low viral loads, as it is one of the DNA viruses with the largest genome and the most AT-biased, and has a significant number of tandem repeats. Here we evaluated the performance of metagenomic and amplicon sequencing techniques, and three sequencing platforms in MPXV genome sequencing based on multiple clinical specimens of five mpox cases in Chinese mainland. We rapidly identified the full-length genome of MPXV with the assembly of accurate tandem repeats in multiple clinical specimens. Amplicon sequencing enables cost-effective and rapid sequencing of clinical specimens to obtain high-quality MPXV genomes. Third-generation sequencing facilitates the assembly of the terminal tandem repeat regions in the monkeypox virus genome and corrects a common misassembly in published sequences. Besides, several intra-host single nucleotide variations were identified in the first imported mpox case. This study offers an evaluation of various strategies aimed at identifying the complete genome of MPXV in clinical specimens. The findings of this study will significantly enhance the surveillance of MPXV.

    Reference (41) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return