Citation: Jiao Hu, Zixiong Zeng, Xia Chen, Manyu Zhang, Zenglei Hu, Min Gu, Xiaoquan Wang, Ruyi Gao, Shunlin Hu, Yu Chen, Xiaowen Liu, Daxin Peng, Xiufan Liu. Phosphorylation of PB2 at serine 181 restricts viral replication and virulence of the highly pathogenic H5N1 avian influenza virus in mice .VIROLOGICA SINICA, 2024, 39(1) : 97-112.  http://dx.doi.org/10.1016/j.virs.2023.12.003

Phosphorylation of PB2 at serine 181 restricts viral replication and virulence of the highly pathogenic H5N1 avian influenza virus in mice

  • Corresponding author: Xiufan Liu, xfliu@yzu.edu.cn
  • Received Date: 01 May 2023
    Accepted Date: 12 December 2023
    Available online: 14 December 2023
  • Influenza A virus (IAV) continues to pose a pandemic threat to public health, resulting a high mortality rate annually and during pandemic years. Posttranslational modification of viral protein plays a substantial role in regulating IAV infection. Here, based on immunoprecipitation (IP)-based mass spectrometry (MS) and purified virus-coupled MS, a total of 89 phosphorylation sites distributed among 10 encoded viral proteins of IAV were identified, including 60 novel phosphorylation sites. Additionally, for the first time, we provide evidence that PB2 can also be acetylated at site K187. Notably, the PB2 S181 phosphorylation site was consistently identified in both IP-based MS and purified virus-based MS. Both S181 and K187 are exposed on the surface of the PB2 protein and are highly conserved in various IAV strains, suggesting their fundamental importance in the IAV life cycle. Bioinformatic analysis results demonstrated that S181E/A and K187Q/R mimic mutations do not significantly alter the PB2 protein structure. While continuous phosphorylation mimicked by the PB2 S181E mutation substantially decreases viral fitness in mice, PB2 K187Q mimetic acetylation slightly enhances viral virulence in mice. Mechanistically, PB2 S181E substantially impairs viral polymerase activity and viral replication, remarkably dampens protein stability and nuclear accumulation of PB2, and significantly weakens IAV-induced inflammatory responses. Therefore, our study further enriches the database of phosphorylation and acetylation sites of influenza viral proteins, laying a foundation for subsequent mechanistic studies. Meanwhile, the unraveled antiviral effect of PB2 S181E mimetic phosphorylation may provide a new target for the subsequent study of antiviral drugs.

  • 加载中
  • 10.1016j.virs.2023.12.003-ESM.docx
    1. Agüero, M., Monne, I., Sánchez, A., Zecchin, B., Fusaro, A., Ruano, M. J., Del Valle Arrojo, M., Fernández-Antonio, R., Souto, A. M., Tordable, P., Cañás, J., Bonfante, F., Giussani, E., Terregino, C., & Orejas, J. J. 2023. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro surveillance, 28, 2300001.

    2. Boergeling, Y., Brunotte, L.,Ludwig, S., 2021. Dynamic phospho-modification of viral proteins as a crucial regulatory layer of influenza A virus replication and innate immune responses. Biol Chem, 402, 1493-1504.

    3. Cazals, F.,Tetley, R., 2019. Characterizing molecular flexibility by combining least root mean square deviation measures. Proteins, 87, 380-389.

    4. Chen, H., Qian, Y.J., Chen, X., Ruan, Z.Y., Ye, Y.T., Chen, H.J., Babiuk, L.A., Jung, Y.S.,Dai, J.J., 2019. HDAC6 Restricts Influenza A Virus by Deacetylation of the RNA Polymerase PA Subunit. J Virol, 93.

    5. Chen, L., Wang, C.M., Luo, J., Su, W., Li, M., Zhao, N., Lyu, W.T., Attaran, H., He, Y.P., Ding, H.,He, H.X., 2017. Histone Deacetylase 1 Plays an Acetylation-Independent Role in Influenza A Virus Replication. Frontiers in Immunology, 8.

    6. Chen, W., Shao, J., Ying, Z., Du, Y.,Yu, Y., 2022. Approaches for discovery of small-molecular antivirals targeting to influenza A virus PB2 subunit. Drug Discov Today, 27, 1545-1553.

    7. Cheng, J., Tao, J., Li, B., Shi, Y.,Liu, H., 2019. The tyrosine 73 and serine 83 dephosphorylation of H1N1 swine influenza virus NS1 protein attenuates virus replication and induces high levels of beta interferon. Virol J, 16, 152.

    8. Cui, L., Zheng, W., Li, M., Bai, X., Yang, W., Li, J., Fan, W., Gao, G.F., Sun, L.,Liu, W., 2019. Phosphorylation Status of Tyrosine 78 Residue Regulates the Nuclear Export and Ubiquitination of Influenza A Virus Nucleoprotein. Front Microbiol, 10, 1816.

    9. Dawson, A.R., Wilson, G.M., Coon, J.J.,Mehle, A., 2020a. Post-Translation Regulation of Influenza Virus Replication. Annu Rev Virol, 7, 167-187.

    10. Dawson, A.R., Wilson, G.M., Freiberger, E.C., Mondal, A., Coon, J.J.,Mehle, A., 2020b. Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. PLoS Pathog, 16, e1008841.

    11. Elshina, E.,Te Velthuis, A.J.W., 2021. The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci, 78, 7237-7256.

    12. Esparza, M., Bhat, P.,Fontoura, B.M., 2022. Viral-host interactions during splicing and nuclear export of influenza virus mRNAs. Curr Opin Virol, 55, 101254.

    13. Günl, F., Krischuns, T., Schreiber, J., Henschel, L., Wahrenburg, M., Drexler, H., Leidel, S., Cojocaru, V., Seebohm, G., Mellmann, A., Schwemmle, M., Ludwig, S.,Brunotte, L., 2023. The ubiquitination landscape of the influenza A virus polymerase. Nature Communications, 14, 787.

    14. Giese, S., Ciminski, K., Bolte, H., Moreira, E.A., Lakdawala, S., Hu, Z.H., David, Q., Kolesnikova, L., Gotz, V., Zhao, Y.X., Dengjel, J., Chin, Y.E., Xu, K.,Schwemmle, M., 2017. Role of influenza A virus NP acetylation on viral growth and replication. Nature Communications, 8.

    15. Hatakeyama, D., Shoji, M., Ogata, S., Masuda, T., Nakano, M., Komatsu, T., Saitoh, A., Makiyama, K., Tsuneishi, H., Miyatake, A., Takahira, M., Nishikawa, E., Ohkubo, A., Noda, T., Kawaoka, Y., Ohtsuki, S.,Kuzuhara, T., 2022. Acetylation of the influenza A virus polymerase subunit PA in the N-terminal domain positively regulates its endonuclease activity. Febs Journal, 289, 231-245.

    16. Hatta, M., Gao, P., Halfmann, P.,Kawaoka, Y., 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 293, 1840-1842.

    17. Holsinger, L.J., Shaughnessy, M.A., Micko, A., Pinto, L.H.,Lamb, R.A., 1995. Analysis of the posttranslational modifications of the influenza virus M2 protein. J Virol, 69, 1219-1225.

    18. Hu, J., Hu, Z., Song, Q., Gu, M., Liu, X., Wang, X., Hu, S., Chen, C., Liu, H., Liu, W., Chen, S.,Peng, D., 2013. The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. J Virol, 87, 2660-2672.

    19. Hu, J., Mo, Y., Wang, X., Gu, M., Hu, Z., Zhong, L., Wu, Q., Hao, X., Hu, S., Liu, W., Liu, H., Liu, X.,Liu, X., 2015. PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza A virus in avian species by inhibiting virus replication and host response. J Virol, 89, 4126-4142.

    20. Hutchinson, E.C., Denham, E.M., Thomas, B., Trudgian, D.C., Hester, S.S., Ridlova, G., York, A., Turrell, L.,Fodor, E., 2012. Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry. PLoS Pathog, 8, e1002993.

    21. Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., Li, C., Kawakami, E., Yamada, S., Kiso, M., Suzuki, Y., Maher, E.A., Neumann, G.,Kawaoka, Y., 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 486, 420-428.

    22. Kathum, O.A., Schrader, T., Anhlan, D., Nordhoff, C., Liedmann, S., Pande, A., Mellmann, A., Ehrhardt, C., Wixler, V.,Ludwig, S., 2016. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity. Cell Microbiol, 18, 784-791.

    23. Keating, J.A.,Striker, R., 2012. Phosphorylation events during viral infections provide potential therapeutic targets. Rev Med Virol, 22, 166-181.

    24. Labarre, D.D.,Lowy, R.J., 2001. Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J Virol Methods, 96, 107-126.

    25. Li, Y., Sun, L., Zheng, W., Madina, M., Li, J., Bi, Y., Wang, H., Liu, W.,Luo, T.R., 2018. Phosphorylation and dephosphorylation of threonine 188 in nucleoprotein is crucial for the replication of influenza A virus. Virology, 520, 30-38.

    26. Liu, L., Madhugiri, R., Saul, V.V., Bacher, S., Kracht, M., Pleschka, S.,Schmitz, M.L., 2023a. Phosphorylation of the PA subunit of influenza polymerase at Y393 prevents binding of the 5'-termini of RNA and polymerase function. Sci Rep, 13, 7042.

    27. Liu, L., Weber, A., Linne, U., Shehata, M., Pleschka, S., Kracht, M.,Schmitz, M.L., 2023b. Phosphorylation of Influenza A Virus Matrix Protein 1 at Threonine 108 Controls Its Multimerization State and Functional Association with the STRIPAK Complex. mBio, 14, e0323122.

    28. Lo, C.Y., Tang, Y.S.,Shaw, P.C., 2018. Structure and Function of Influenza Virus Ribonucleoprotein. Subcell Biochem, 88, 95-128.

    29. Long, J.S., Giotis, E.S., Moncorge, O., Frise, R., Mistry, B., James, J., Morisson, M., Iqbal, M., Vignal, A., Skinner, M.A.,Barclay, W.S., 2016. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature, 529, 101-104.

    30. Ma, J.J., Wu, R.J., Xu, G.L., Cheng, Y.Q., Wang, Z.F., Wang, H.A., Yan, Y.X., Li, J.X.,Sun, J.H., 2020. Acetylation at K108 of the NS1 protein is important for the replication and virulence of influenza virus. Veterinary Research, 51.

    31. Mecate-Zambrano, A., Sukumar, S., Seebohm, G., Ciminski, K., Schreiber, A., Anhlan, D., Greune, L., Wixler, L., Grothe, S., Stein, N.C., Schmidt, M.A., Langer, K., Schwemmle, M., Shi, T., Ludwig, S.,Boergeling, Y., 2020. Discrete spatio-temporal regulation of tyrosine phosphorylation directs influenza A virus M1 protein towards its function in virion assembly. PLoS Pathog, 16, e1008775.

    32. Mitzner, D., Dudek, S.E., Studtrucker, N., Anhlan, D., Mazur, I., Wissing, J., Jansch, L., Wixler, L., Bruns, K., Sharma, A., Wray, V., Henklein, P., Ludwig, S.,Schubert, U., 2009. Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. Cell Microbiol, 11, 1502-1516.

    33. Mondal, A., Potts, G.K., Dawson, A.R., Coon, J.J.,Mehle, A., 2015. Phosphorylation at the homotypic interface regulates nucleoprotein oligomerization and assembly of the influenza virus replication machinery. PLoS Pathog, 11, e1004826.

    34. Oishi, K., Yamayoshi, S., Kozuka-Hata, H., Oyama, M.,Kawaoka, Y., 2018. N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Cell Reports, 24, 851-860.

    35. Patil, A., Anhlan, D., Ferrando, V., Mecate-Zambrano, A., Mellmann, A., Wixler, V., Boergeling, Y.,Ludwig, S., 2021. Phosphorylation of Influenza A Virus NS1 at Serine 205 Mediates Its Viral Polymerase-Enhancing Function. J Virol, 95.

    36. Perales, B., Sanz-Ezquerro, J.J., Gastaminza, P., Ortega, J., Santaren, J.F., Ortin, J.,Nieto, A., 2000. The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis. J Virol, 74, 1307-1312.

    37. Puryear, W., Sawatzki, K., Hill, N., Foss, A., Stone, J.J., Doughty, L., Walk, D., Gilbert, K., Murray, M., Cox, E., Patel, P., Mertz, Z., Ellis, S., Taylor, J., Fauquier, D., Smith, A., Digiovanni, R.A., Jr., Van De Guchte, A., Gonzalez-Reiche, A.S., Khalil, Z., Van Bakel, H., Torchetti, M.K., Lantz, K., Lenoch, J.B.,Runstadler, J., 2023. Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States. Emerg Infect Dis, 29, 786-791.

    38. Reuther, P., Giese, S., Gotz, V., Riegger, D.,Schwemmle, M., 2014. Phosphorylation of highly conserved serine residues in the influenza A virus nuclear export protein NEP plays a minor role in viral growth in human cells and mice. J Virol, 88, 7668-7673.

    39. Shvedunova, M.,Akhtar, A., 2022. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol, 23, 329-349.

    40. Stevaert, A.,Naesens, L., 2016. The Influenza Virus Polymerase Complex: An Update on Its Structure, Functions, and Significance for Antiviral Drug Design. Med Res Rev, 36, 1127-1173.

    41. Subbarao, E.K., London, W.,Murphy, B.R., 1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol, 67, 1761-1764.

    42. Sun, Y., Qin, K., Wang, J., Pu, J., Tang, Q., Hu, Y., Bi, Y., Zhao, X., Yang, H., Shu, Y.,Liu, J., 2011. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci U S A, 108, 4164-4169.

    43. Turrell, L., Hutchinson, E.C., Vreede, F.T.,Fodor, E., 2015. Regulation of influenza A virus nucleoprotein oligomerization by phosphorylation. J Virol, 89, 1452-1455.

    44. Wang, C., Qu, R., Zong, Y., Qin, C., Liu, L., Gao, X., Sun, H., Sun, Y., Chang, K.C., Zhang, R., Liu, J.,Pu, J., 2022. Enhanced stability of M1 protein mediated by a phospho-resistant mutation promotes the replication of prevailing avian influenza virus in mammals. PLoS Pathog, 18, e1010645.

    45. Wang, S., Zhao, Z., Bi, Y., Sun, L., Liu, X.,Liu, W., 2013. Tyrosine 132 phosphorylation of influenza A virus M1 protein is crucial for virus replication by controlling the nuclear import of M1. J Virol, 87, 6182-6191.

    46. Weber, A., Dam, S., Saul, V.V., Kuznetsova, I., Muller, C., Fritz-Wolf, K., Becker, K., Linne, U., Gu, H., Stokes, M.P., Pleschka, S., Kracht, M.,Schmitz, M.L., 2019. Phosphoproteome Analysis of Cells Infected with Adapted and Nonadapted Influenza A Virus Reveals Novel Pro- and Antiviral Signaling Networks. J Virol, 93.

    47. Whittaker, G., Kemler, I.,Helenius, A., 1995. Hyperphosphorylation of mutant influenza virus matrix protein, M1, causes its retention in the nucleus. J Virol, 69, 439-445.

    48. Zecha, J., Gabriel, W., Spallek, R., Chang, Y.C., Mergner, J., Wilhelm, M., Bassermann, F.,Kuster, B., 2022. Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Nature Communications, 13, 165.

    49. Zhang, J., Peng, Q., Zhao, W., Sun, W., Yang, J.,Liu, N., 2021. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications. J Proteome Res, 20, 110-121.

    50. Zheng, H., Ma, L., Gui, R., Lin, X., Ke, X., Jian, X., Ye, C.,Chen, Q., 2022. G Protein Subunit beta1 Facilitates Influenza A Virus Replication by Promoting the Nuclear Import of PB2. J Virol, 96, e0049422.

    51. Zheng, W., Cao, S., Chen, C., Li, J., Zhang, S., Jiang, J., Niu, Y., Fan, W., Li, Y., Bi, Y., Gao, G.F., Sun, L.,Liu, W., 2017. Threonine 80 phosphorylation of non-structural protein 1 regulates the replication of influenza A virus by reducing the binding affinity with RIG-I. Cell Microbiol, 19.

    52. Zheng, W., Cui, L., Li, M., Li, Y., Fan, W., Yang, L., Li, J., Sun, L.,Liu, W., 2021. Nucleoprotein phosphorylation site (Y385) mutation confers temperature sensitivity to influenza A virus due to impaired nucleoprotein oligomerization at a lower temperature. Sci China Life Sci, 64, 633-643.

    53. Zheng, W., Li, J., Wang, S., Cao, S., Jiang, J., Chen, C., Ding, C., Qin, C., Ye, X., Gao, G.F.,Liu, W., 2015. Phosphorylation controls the nuclear-cytoplasmic shuttling of influenza A virus nucleoprotein. J Virol, 89, 5822-5834.

    54. Zheng, W.N., Li, J., Wang, S.S., Cao, S.S., Jiang, J.W., Chen, C., Ding, C., Qin, C., Ye, X., Gao, G.F.,Liu, W.J., 2015. Phosphorylation Controls the Nuclear-Cytoplasmic Shuttling of Influenza A Virus Nucleoprotein. Journal of Virology, 89, 5822-5834.

  • 加载中

Article Metrics

Article views(1332) PDF downloads(8) Cited by()

Related
Proportional views

    Phosphorylation of PB2 at serine 181 restricts viral replication and virulence of the highly pathogenic H5N1 avian influenza virus in mice

      Corresponding author: Xiufan Liu, xfliu@yzu.edu.cn
    • a. Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China;
    • b. Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225009, China;
    • c. Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China;
    • d. Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, 225009, China

    Abstract: Influenza A virus (IAV) continues to pose a pandemic threat to public health, resulting a high mortality rate annually and during pandemic years. Posttranslational modification of viral protein plays a substantial role in regulating IAV infection. Here, based on immunoprecipitation (IP)-based mass spectrometry (MS) and purified virus-coupled MS, a total of 89 phosphorylation sites distributed among 10 encoded viral proteins of IAV were identified, including 60 novel phosphorylation sites. Additionally, for the first time, we provide evidence that PB2 can also be acetylated at site K187. Notably, the PB2 S181 phosphorylation site was consistently identified in both IP-based MS and purified virus-based MS. Both S181 and K187 are exposed on the surface of the PB2 protein and are highly conserved in various IAV strains, suggesting their fundamental importance in the IAV life cycle. Bioinformatic analysis results demonstrated that S181E/A and K187Q/R mimic mutations do not significantly alter the PB2 protein structure. While continuous phosphorylation mimicked by the PB2 S181E mutation substantially decreases viral fitness in mice, PB2 K187Q mimetic acetylation slightly enhances viral virulence in mice. Mechanistically, PB2 S181E substantially impairs viral polymerase activity and viral replication, remarkably dampens protein stability and nuclear accumulation of PB2, and significantly weakens IAV-induced inflammatory responses. Therefore, our study further enriches the database of phosphorylation and acetylation sites of influenza viral proteins, laying a foundation for subsequent mechanistic studies. Meanwhile, the unraveled antiviral effect of PB2 S181E mimetic phosphorylation may provide a new target for the subsequent study of antiviral drugs.

    Reference (54) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return