Citation: Mei-li LI, Hong GUO, Qiong DING, Chun-fu ZHENG. A Multiple Functional Protein: the Herpes Simplex Virus Type 1 Tegument Protein VP22* .VIROLOGICA SINICA, 2009, 24(3) : 153-161.  http://dx.doi.org/10.1007/s12250-009-3035-2

A Multiple Functional Protein: the Herpes Simplex Virus Type 1 Tegument Protein VP22*

cstr: 32224.14.s12250-009-3035-2
  • Corresponding author: Chun-fu ZHENG, zhengcf@wh.iov.cn
  • Received Date: 19 February 2009
    Accepted Date: 08 April 2009
    Available online: 01 June 2009

    Fund Project: Open Research Fund Program of the State Key Laboratory of Virology of China 2009007The Startup Fund of the Hundred Talents Program of the Chinese Academy of Science 20071010141National Natural Science Foundation of China 30870120Open Research Fund Program of the State Key Laboratory of Virology of China 2007003

  • The herpes simplex virus type 1 (HSV-1) VP22, is one of the most abundant HSV-1 tegument proteins with an average stoichiometry of 2 400 copies per virion and conserved among alphaherpesvirinae. Many functions are attributed to VP22, including nuclear localization, chromatin binding, microtubule binding, induction of microtubule reorganization, intercellular transport, interaction with cellular proteins, such as template activating factor I (TAF-I) and nonmuscle myosin II A (NMIIA), and viral proteins including tegument protein VP16, pUS9 and pUL46, glycoprotein E (gE) and gD. Recently, many novel functions performed by the HSV-1 VP22 protein have been shown, including promotion of protein synthesis at late times in infection, accumulation of a subset of viral mRNAs at early times in infection and possible transcriptional regulation function.

  • 加载中
    1. Aints A, Guven H, Gahrton G, et al. 2001. Mapping of herpes simplex virus-1 vp22 functional domains for inter-and subcellular protein targeting. Gene Ther, 8 (14): 1051-1056.
        doi: 10.1038/sj.gt.3301493

    2. Beerens A M, Rots M G, de Vries E F, et al. 2007. Fusion of herpes simplex virus thymidine kinase to vp22 does not result in intercellular trafficking of the protein. Int J Mol Med, 19 (5): 841-849.

    3. Bian J, Kiedrowski M, Mal N, et al. 2006. Engineered cell therapy for sustained local myocardial delivery of nonsecreted proteins. Cell Transplant, 15 (1): 67-74.
        doi: 10.3727/000000006783982197

    4. Bian J, Popovic Z B, Benejam C, et al. 2007. Effect of cell-based intercellular delivery of transcription factor gata4 on ischemic cardiomyopathy. Circ Res, 100 (11): 1626-1633.
        doi: 10.1161/01.RES.0000269778.75877.68

    5. Brandimarti R, Roizman B. 1997. Us9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes. Proc Natl Acad Sci USA, 94 (25): 13973-13978.
        doi: 10.1073/pnas.94.25.13973

    6. Brignati M J, Loomis J S, Wills J W, et al. 2003. Membrane association of vp 22, a herpes simplex virus type 1 tegument protein. J Virol, 77 (8): 4888-4898.
        doi: 10.1128/JVI.77.8.4888-4898.2003

    7. Duffy C, Mbong E F, Baines J D. 2009. Vp22 of herpes simplex virus 1 promotes protein synthesis at late times in infection and accumulation of a subset of viral mrnas at early times in infection. J Virol, 83 (2): 1009-1017.
        doi: 10.1128/JVI.02245-07

    8. Duffy C, Lavail J H, Tauscher A N, et al. 2006. Characterization of a ul49-null mutant: Vp22 of herpes simplex virus type 1 facilitates viral spread in cultured cells and the mouse cornea. J Virol, 80 (17): 8664-8675.
        doi: 10.1128/JVI.00498-06

    9. Elliott G, O'Hare P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88 (2): 223-233.
        doi: 10.1016/S0092-8674(00)81843-7

    10. Elliott G, P. Hare O'. 1998. Herpes simplex virus type 1 tegument protein vp22 induces the stabilization and hyperacetylation of microtubules. J Virol, 72 (8): 6448-6455.

    11. Elliott G, O'Hare P. 1999. Intercellular trafficking of vp22-gfp fusion proteins. Gene Ther, 6 (1): 149-151.
        doi: 10.1038/sj.gt.3300850

    12. Elliott G, O'Hare P. 1999. Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J Virol, 73 (5): 4110-4119.

    13. Elliott G, Mouzakitis G, O'Hare P. 1995. Vp16 interacts via its activation domain with vp22, a tegument protein of herpes simplex virus, and is relocated to a novel macromo-lecular assembly in coexpressing cells. J Virol, 69 (12): 7932-7941.

    14. Elliott G, O'Reilly D, O'Hare P. 1999. Identification of phosphorylation sites within the herpes simplex virus tegument protein vp22. J Virol, 73 (7): 6203-6206.

    15. Elliott G, Hafezi W, Whiteley A, et al. 2005. Deletion of the herpes simplex virus vp22-encoding gene (ul49) alters the expression, localization, and virion incorporation of icp0. J Virol, 79 (15): 9735-9745.
        doi: 10.1128/JVI.79.15.9735-9745.2005

    16. Elliott G D, Meredith D M. 1992. The herpes simplex virus type 1 tegument protein vp22 is encoded by gene ul49. J Gen Virol, 73 (Pt 3): 723-726.

    17. Harms J S, Ren X, Oliveira S C, et al. 2000. Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 vp22 tegument protein subcellular associations. J Virol, 74 (7): 3301-3312.
        doi: 10.1128/JVI.74.7.3301-3312.2000

    18. Heine J W, Honess R W, Cassai E, et al. 1974. Proteins specified by herpes simplex virus. Xii. The virion poly-peptides of type 1 strains. J Virol, 14 (3): 640-651.

    19. Hutchinson I, Whiteley A, Browne H, et al. 2002. Sequential localization of two herpes simplex virus tegu-ment proteins to punctate nuclear dots adjacent to icp0 domains. J Virol, 76 (20): 10365-10373.
        doi: 10.1128/JVI.76.20.10365-10373.2002

    20. Kim T W, Hung C F, Kim J W, et al. 2004. Vaccination with a DNA vaccine encoding herpes simplex virus type 1 vp22 linked to antigen generates long-term antigen-specific cd8-positive memory t cells and protective immunity. Hum Gene Ther, 15 (2): 167-177.
        doi: 10.1089/104303404772679977

    21. Kotsakis A, Pomeranz L E, Blouin A, et al. 2001. Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of vp22, a major virion tegument protein. J Virol, 75 (18): 8697-8711.
        doi: 10.1128/JVI.75.18.8697-8711.2001

    22. LaVail J H, Tauscher A N, Sucher A, et al. 2007. Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience, 146 (3): 974-985.
        doi: 10.1016/j.neuroscience.2007.02.010

    23. Lee J H, Vittone V, Diefenbach E, et al. 2008. Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology, 378 (2): 347-354.
        doi: 10.1016/j.virol.2008.05.035

    24. Lemken M L, Graepler F, Wolf C, et al. 2007. Fusion of hsv-1 vp22 to a bifunctional chimeric supercd suicide gene compensates for low suicide gene transduction efficiencies. Int J Oncol, 30 (5): 1153-1161.

    25. Lemken M L, Wolf C, Wybranietz W A, et al. 2007. Evidence for intercellular trafficking of vp22 in living cells. Mol Ther, 15 (2): 310-319.
        doi: 10.1038/sj.mt.6300013

    26. Lopez M R, Schlegel E F, Wintersteller S, et al. 2008. The major tegument structural protein vp22 targets areas of dispersed nucleolin and marginalized chromatin during productive herpes simplex virus 1 infection. Virus Res, 136 (1-2): 175-188.
        doi: 10.1016/j.virusres.2008.05.010

    27. Lundberg M, Johansson M. 2001. Is vp22 nuclear homing an artifact? Nat Biotechnol, 19 (8): 713-714.
        doi: 10.1038/90741

    28. Martin A, O'Hare P, McLauchlan J, et al. 2002. Herpes simplex virus tegument protein vp22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding. J Virol, 76 (10): 4961-4970.
        doi: 10.1128/JVI.76.10.4961-4970.2002

    29. Mettenleiter T C. 2002. Herpesvirus assembly and egress. J Virol, 76 (4): 1537-1547.
        doi: 10.1128/JVI.76.4.1537-1547.2002

    30. Miranda-Saksena M, Boadle R A, Armati P, et al. 2002. In rat dorsal root ganglion neurons, herpes simplex virus type 1 tegument forms in the cytoplasm of the cell body. J Virol, 76 (19): 9934-9951.
        doi: 10.1128/JVI.76.19.9934-9951.2002

    31. Miyaji-Yamaguchi M, Okuwaki M, Nagata K. 1999. Coiled-coil structure-mediated dimerization of template activating factor-i is critical for its chromatin remodeling activity. J Mol Biol, 290 (2): 547-557.
        doi: 10.1006/jmbi.1999.2898

    32. Mori T, Mineta Y, Aoyama Y, et al. 2008. Efficient secretion of the herpes simplex virus tegument protein vp22 from living mammalian cells. Arch Virol, 153 (6): 1191-1195.
        doi: 10.1007/s00705-008-0094-x

    33. Mouzakitis G, McLauchlan J, Barreca C, et al. 2005. Characterization of vp22 in herpes simplex virus-infected cells. J Virol, 79 (19): 12185-12198.
        doi: 10.1128/JVI.79.19.12185-12198.2005

    34. Murphy M A, Bucks M A, O'Regan K J, et al. 2008. The hsv-1 tegument protein pul46 associates with cellular membranes and viral capsids. Virology, 376 (2): 279-289.
        doi: 10.1016/j.virol.2008.03.018

    35. Perkins S D, Hartley M G, Lukaszewski R A, et al. 2005. Vp22 enhances antibody responses from DNA vaccines but not by intercellular spread. Vaccine, 23 (16): 1931-1940.
        doi: 10.1016/j.vaccine.2004.10.033

    36. Pomeranz L E, Blaho J A. 1999. Modified vp22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection. J Virol, 73 (8): 6769-6781.

    37. Pomeranz L E, Blaho J A. 2000. Assembly of infectious herpes simplex virus type 1 virions in the absence of full-length vp22. J Virol, 74 (21): 10041-10054.
        doi: 10.1128/JVI.74.21.10041-10054.2000

    38. Posnett D N, Engelhorn M E, Lin Y, et al. 2009. Develop-ment of effective vaccines for old mice in a tumor model. Vaccine, 27 (7): 1093-1100.
        doi: 10.1016/j.vaccine.2008.11.112

    39. Potel C, Elliott G. 2005. Phosphorylation of the herpes simplex virus tegument protein vp22 has no effect on incorporation of vp22 into the virus but is involved in optimal expression and virion packaging of icp0. J Virol, 79 (22): 14057-14068.
        doi: 10.1128/JVI.79.22.14057-14068.2005

    40. Rutjes S A, Bosma P J, Rohn J L, et al. 2003. Induction of insolubility by herpes simplex virus vp22 precludes intercellular trafficking of n-terminal apoptin-vp22 fusion proteins. J Mol Med, 81 (9): 558-565.
        doi: 10.1007/s00109-003-0457-4

    41. Saha S, Yoshida S, Ohba K, et al. 2006. A fused gene of nucleoprotein (np) and herpes simplex virus genes (vp22) induces highly protective immunity against different subtypes of influenza virus. Virology, 354 (1): 48-57.
        doi: 10.1016/j.virol.2006.04.015

    42. Schwarze S R, Hruska K A, Dowdy S F. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol, 10 (7): 290-295.
        doi: 10.1016/S0962-8924(00)01771-2

    43. Sciortino M T, Taddeo B, Poon A P, et al. 2002. Of the three tegument proteins that package mrna in herpes simplex virions, one (vp22) transports the mrna to unin-fected cells for expression prior to viral infection. Proc Natl Acad Sci U S A, 99 (12): 8318-8323.
        doi: 10.1073/pnas.122231699

    44. Sciortino M T, Taddeo B, Giuffre-Cuculletto M, et al. 2007. Replication-competent herpes simplex virus 1 iso-lates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the ul49 gene vary with respect to the defect in the ul41 gene encoding host shutoff rnase. J Virol, 81 (20): 10924-10932.
        doi: 10.1128/JVI.01239-07

    45. Sellers J R. 2000. Myosins: A diverse superfamily. Biochim Biophys Acta, 1496 (1): 3-22.
        doi: 10.1016/S0167-4889(00)00005-7

    46. Seo S B, McNamara P, Heo S, et al. 2001. Regulation of histone acetylation and transcription by inhat, a human cellular complex containing the set oncoprotein. Cell, 104 (1): 119-130.
        doi: 10.1016/S0092-8674(01)00196-9

    47. Stroh C, Held J, Samraj A K, et al. 2003. Specific inhibition of transcription factor nf-kappab through in-tracellular protein delivery of i kappabalpha by the herpes virus protein vp22. Oncogene, 22 (34): 5367-5373.
        doi: 10.1038/sj.onc.1206544

    48. Taddeo B, Sciortino M T, Zhang W, et al. 2007. Interaction of herpes simplex virus rnase with vp16 and vp22 is required for the accumulation of the protein but not for accumulation of mrna. Proc Natl Acad Sci USA, 104 (29): 12163-12168.
        doi: 10.1073/pnas.0705245104

    49. van Leeuwen H, Elliott G, O'Hare P. 2002. Evidence of a role for nonmuscle myosin ii in herpes simplex virus type 1 egress. J Virol, 76 (7): 3471-3481.
        doi: 10.1128/JVI.76.7.3471-3481.2002

    50. van Leeuwen H, Okuwaki M, Hong R, et al. 2003. Herpes simplex virus type 1 tegument protein vp22 in-teracts with taf-i proteins and inhibits nucleosome assem-bly but not regulation of histone acetylation by inhat. J Gen Virol, 84 (Pt 9): 2501-2510.

    51. Vittone V, Diefenbach E, Triffett D, et al. 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol, 79 (15): 9566-9571.
        doi: 10.1128/JVI.79.15.9566-9571.2005

    52. Wybranietz W A, Prinz F, Spiegel M, et al. 1999. Quantification of vp22-gfp spread by direct fluorescence in 15 commonly used cell lines. J Gene Med, 1 (4): 265-274.
        doi: 10.1002/(ISSN)1521-2254

    53. Xiong F, Xiao S, Yu M, et al. 2007. Enhanced effect of microdystrophin gene transfection by hsv-vp22 mediated intercellular protein transport. BMC Neurosci, 8: 50.
        doi: 10.1186/1471-2202-8-50

    54. Xiong F, Xiao S, Peng F, et al. 2007. Herpes simplex virus vp22 enhances adenovirus-mediated microdystrophin gene transfer to skeletal muscles in dystrophin-deficient (mdx) mice. Hum Gene Ther, 18 (6): 490-501.
        doi: 10.1089/hum.2006.155

    55. Yu X, Li W, Liu L, et al. 2008. Functional analysis of transcriptional regulation of herpes simplex virus type 1 tegument protein vp22. Sci China C Life Sci, 51 (11): 966-972.
        doi: 10.1007/s11427-008-0127-4

    56. Zhang Y, Sirko D A, McKnight J L. 1991. Role of herpes simplex virus type 1 ul46 and ul47 in alpha tif-mediated transcriptional induction: Characterization of three viral deletion mutants. J Virol, 65 (2): 829-841.

  • 加载中

Article Metrics

Article views(5656) PDF downloads(16) Cited by()

Related
Proportional views

    A Multiple Functional Protein: the Herpes Simplex Virus Type 1 Tegument Protein VP22*

      Corresponding author: Chun-fu ZHENG, zhengcf@wh.iov.cn
    • State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
    Fund Project:  Open Research Fund Program of the State Key Laboratory of Virology of China 2009007The Startup Fund of the Hundred Talents Program of the Chinese Academy of Science 20071010141National Natural Science Foundation of China 30870120Open Research Fund Program of the State Key Laboratory of Virology of China 2007003

    Abstract: The herpes simplex virus type 1 (HSV-1) VP22, is one of the most abundant HSV-1 tegument proteins with an average stoichiometry of 2 400 copies per virion and conserved among alphaherpesvirinae. Many functions are attributed to VP22, including nuclear localization, chromatin binding, microtubule binding, induction of microtubule reorganization, intercellular transport, interaction with cellular proteins, such as template activating factor I (TAF-I) and nonmuscle myosin II A (NMIIA), and viral proteins including tegument protein VP16, pUS9 and pUL46, glycoprotein E (gE) and gD. Recently, many novel functions performed by the HSV-1 VP22 protein have been shown, including promotion of protein synthesis at late times in infection, accumulation of a subset of viral mRNAs at early times in infection and possible transcriptional regulation function.