Citation: Yan-bin Ma, Hui-yun Chang. Caspase Work Model During Pathogen Infection * .VIROLOGICA SINICA, 2011, 26(6) : 366-375.  http://dx.doi.org/10.1007/s12250-011-3218-5

Caspase Work Model During Pathogen Infection *

  • Corresponding author: Hui-yun Chang, changhuiyun@126.com
  • Received Date: 31 August 2011
    Accepted Date: 26 October 2011
    Available online: 01 December 2011

    Fund Project: The Fund of key special projects for breeding new varieties of genetically engineered organisms 2009 ZX08006-002BThe Fund of key special projects for breeding new varieties of genetically engineered organisms 2011ZX08011-004The Fund of key special projects for breeding new varieties of genetically engineered organisms 2009ZX08007-008B

  • Caspases are an evolutionarily conserved family of aspartate-specific cystein-dependent proteases with essential functions in apoptosis and normally exist in cells as inactive proenzymes. In addition to the inflammatory caspases, the initiator and effector caspases have been shown to have an important role in regulating the immune response, but are involved in different ways. We give a brief introduction on the benefit of apoptosis on the clearance of invasive pathogens, and the caspase functions involved in the immune response. Then we construct a working model of caspases during pathogen invasion. A detailed description of the three modes is given in the discussion. These three modes are regulated by different inhibitors, and there may be a novel way to treat intracellular pathogen and autoimmune diseases based on the specific inhibitors.

  • 加载中
    1. Akhter A, Gavrilin M A, Frantz L, et al. 2009. Caspase-7 activation by the nlrc4/ipaf inflammasome restricts legionella pneumophila infection. PLoS Pathog, 5(4): e1000361.
        doi: 10.1371/journal.ppat.1000361

    2. Balachandran S, Thomas E, Barber G N. 2004. A fadd-dependent innate immune mechanism in mammalian cells. Nature, 432(7015): 401-405.
        doi: 10.1038/nature03124

    3. Bergsbaken T, Fink S L, Cookson B T. 2009. Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol, 7(2): 99-109.
        doi: 10.1038/nrmicro2070

    4. Boatright K M, Salvesen G S. 2003. Mechanisms of caspase activation. Curr Opin Cell Biol, 15(6): 725-731.
        doi: 10.1016/j.ceb.2003.10.009

    5. Brodsky I E, Monack D. 2009. Nlr-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol, 21(4): 199-207.
        doi: 10.1016/j.smim.2009.05.007

    6. Creagh E M, O'Neill L A. 2006. Tlrs, nlrs and rlrs: A trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol, 27(8): 352-357.
        doi: 10.1016/j.it.2006.06.003

    7. Faherty C S, Maurelli A T. 2008. Staying alive: Bacterial inhibition of apoptosis during infection. Trends Microbiol, 16(4): 173-180.
        doi: 10.1016/j.tim.2008.02.001

    8. Guillermo L V, Pereira W F, De Meis J, et al. 2009. Targeting caspases in intracellular protozoan infections. Immunopharmacol Immunotoxicol, 31(2): 159-173.
        doi: 10.1080/08923970802332164

    9. Gupton S L, Anderson K L, Kole T P, et al. 2005. Cell migration without a lamellipodium: Translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol, 168(4): 619-631.
        doi: 10.1083/jcb.200406063

    10. Hayden M S, Ghosh S. 2011. Nf-kappab in immunobiology. Cell Res, 21(2): 223-244.
        doi: 10.1038/cr.2011.13

    11. Kang S J, Wang S, Hara H, et al. 2000. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol, 149(3): 613-622.
        doi: 10.1083/jcb.149.3.613

    12. Kawai T, Takahashi K, Sato S, et al. 2005. Ips-1, an adaptor triggering rig-i-and mda5-mediated type i interferon induction. Nat Immunol, 6(10): 981-988.
        doi: 10.1038/ni1243

    13. Kelly D M, ten Bokum A M, O'Leary S M, et al. 2008. Bystander macrophage apoptosis after mycobacterium tuberculosis h37ra infection. Infect Immun, 76(1): 351-360.
        doi: 10.1128/IAI.00614-07

    14. Koenig A, Russell J Q, Rodgers W A, et al. 2008. Spatial differences in active caspase-8 defines its role in T-cell activation versus cell death. Cell Death Differ, 15(11): 1701-1711.
        doi: 10.1038/cdd.2008.100

    15. Lamkanfi M, Kalai M, Saelens X, et al. 2004. Caspase-1 activates nuclear factor of the kappa-enhancer in b cells independently of its enzymatic activity. J Biol Chem, 279(23): 24785-24793.
        doi: 10.1074/jbc.M400985200

    16. Lara-Tejero M, Sutterwala F S, Ogura Y, et al. 2006. Role of the caspase-1 inflammasome in salmonella typhimurium pathogenesis. J Exp Med, 203(6): 1407-1412.
        doi: 10.1084/jem.20060206

    17. LeBlanc P M, Yeretssian G, Rutherford N, et al. 2008. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe, 3(3): 146-157.
        doi: 10.1016/j.chom.2008.02.004

    18. Leverrier S, Salvesen G S, Walsh C M. 2011. Enzymatically active single chain caspase-8 maintains t-cell survival during clonal expansion. Cell Death Differ, 18(1): 90-98.
        doi: 10.1038/cdd.2010.69

    19. Li J, Brieher W M, Scimone M L, et al. 2007. Caspase-11 regulates cell migration by promoting aip1-cofilin-mediated actin depolymerization. Nat Cell Biol, 9(3): 276-286.
        doi: 10.1038/ncb1541

    20. McCarthy J V, Ni J, Dixit V M. 1998. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem, 273(27): 16968-16975.
        doi: 10.1074/jbc.273.27.16968

    21. Muruve D A, Petrilli V, Zaiss A K, et al. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature, 452(7183): 103-107.
        doi: 10.1038/nature06664

    22. Navarre W W, Zychlinsky A. 2000. Pathogen-induced apoptosis of macrophages: A common end for different pathogenic strategies. Cell Microbiol, 2(4): 265-273.
        doi: 10.1046/j.1462-5822.2000.00056.x

    23. Parihar A, Eubank T D, Doseff A I. 2010. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun, 2(3): 204-215.
        doi: 10.1159/000296507

    24. Schotte P, Schauvliege R, Janssens S, et al. 2001. The cathepsin b inhibitor z-fa.Fmk inhibits cytokine production in macrophages stimulated by lipopolysaccharide. J Biol Chem, 276(24): 21153-21157.
        doi: 10.1074/jbc.M102239200

    25. Scott A M, Saleh M. 2007. The inflammatory caspases: Guardians against infections and sepsis. Cell Death Differ, 14(1): 23-31.
        doi: 10.1038/sj.cdd.4402026

    26. Sharma S, tenOever B R, Grandvaux N, et al. 2003. Triggering the interferon antiviral response through an ikk-related pathway. Science, 300(5622): 1148-1151.
        doi: 10.1126/science.1081315

    27. Shea-Donohue T, Fasano A, Smith A, et al. 2010. Enteric pathogens and gut function: Role of cytokines and stats. Gut Microbes, 1(5): 316-324.
        doi: 10.4161/gmic.1.5.13329

    28. Shen W W, Sa e Silva M, Jaber T, et al. 2009. Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol, 83(18): 9131-9139.
        doi: 10.1128/JVI.00871-09

    29. Staudt L M. 2010. Oncogenic activation of nf-kappab. Cold Spring Harb Perspect Biol, 2(6): a000109.

    30. Su H, Bidere N, Zheng L, et al. 2005. Requirement for caspase-8 in nf-kappab activation by antigen receptor. Science, 307(5714): 1465-1468.
        doi: 10.1126/science.1104765

    31. Theofilopoulos A N, Baccala R, Beutler B, et al. 2005. Type i interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol, 23: 307-336.
        doi: 10.1146/annurev.immunol.23.021704.115843

    32. van de Veerdonk F L, Netea M G, Dinarello C A, et al. 2011. Inflammasome activation and il-1beta and il-18 processing during infection. Trends Immunol, 32(3): 110-116.
        doi: 10.1016/j.it.2011.01.003

    33. van Oers N S, Chen Z J. 2005. Cell biology. Kinasing and clipping down the nf-kappa b trail. Science, 308(5718): 65-66.
        doi: 10.1126/science.1110902

    34. Wang P, Arjona A, Zhang Y, et al. 2010. Caspase-12 controls west Nile virus infection via the viral rna receptor rig-i. Nat Immunol, 11(10): 912-919.
        doi: 10.1038/ni.1933

    35. Warren S E, Mao D P, Rodriguez A E, et al. 2008. Multiple NOD-like receptors activate caspase 1 during listeria monocytogenes infection. J Immunol, 180(11): 7558-7564.
        doi: 10.4049/jimmunol.180.11.7558

    36. Weil R, Israel A. 2006. Deciphering the pathway from the tcr to nf-kappab. Cell Death Differ, 13(5): 826-833.
        doi: 10.1038/sj.cdd.4401856

    37. Wurzer W J, Planz O, Ehrhardt C, et al. 2003. Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J, 22(11): 2717-2728.
        doi: 10.1093/emboj/cdg279

    38. Yazdi A S, Guarda G, D'Ombrain M C, et al. 2010. Inflammatory caspases in innate immunity and inflamma tion. J Innate Immun, 2(3): 228-237.
        doi: 10.1159/000283688

    39. Yoneyama M, Kikuchi M, Matsumoto K, et al. 2005. Shared and unique functions of the dexd/h-box helicases rig-i, mda5, and lgp2 in antiviral innate immunity. J Immunol, 175(5): 2851-2858.
        doi: 10.4049/jimmunol.175.5.2851

    40. Zhirnov O P, Syrtzev V V. 2009. Influenza virus pathogenicity is determined by caspase cleavage motifs located in the viral proteins. J Mol Genet Med, 3(1): 124-132.

  • 加载中

Article Metrics

Article views(3804) PDF downloads(17) Cited by()

Related
Proportional views

    Caspase Work Model During Pathogen Infection *

      Corresponding author: Hui-yun Chang, changhuiyun@126.com
    • State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
    Fund Project:  The Fund of key special projects for breeding new varieties of genetically engineered organisms 2009 ZX08006-002BThe Fund of key special projects for breeding new varieties of genetically engineered organisms 2011ZX08011-004The Fund of key special projects for breeding new varieties of genetically engineered organisms 2009ZX08007-008B

    Abstract: Caspases are an evolutionarily conserved family of aspartate-specific cystein-dependent proteases with essential functions in apoptosis and normally exist in cells as inactive proenzymes. In addition to the inflammatory caspases, the initiator and effector caspases have been shown to have an important role in regulating the immune response, but are involved in different ways. We give a brief introduction on the benefit of apoptosis on the clearance of invasive pathogens, and the caspase functions involved in the immune response. Then we construct a working model of caspases during pathogen invasion. A detailed description of the three modes is given in the discussion. These three modes are regulated by different inhibitors, and there may be a novel way to treat intracellular pathogen and autoimmune diseases based on the specific inhibitors.