For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Ling Tao, JianJun Chen, Jin Meng, Yao Chen, Hongxia Li, Yan Liu, Zhenhua Zheng, Hanzhong Wang. Enhanced Protective Efficacy of H5 Subtype Influenza Vaccine with Modification of the Multibasic Cleavage Site of Hemagglutinin in Retroviral Pseudotypes [J].VIROLOGICA SINICA, 2013, 28(3) : 136-145.  http://dx.doi.org/10.1007/s12250-013-3326-5

Enhanced Protective Efficacy of H5 Subtype Influenza Vaccine with Modification of the Multibasic Cleavage Site of Hemagglutinin in Retroviral Pseudotypes

  • Corresponding author: Zhenhua Zheng, zhengzh@wh.iov.cn
  • Received Date: 26 March 2013
    Accepted Date: 19 April 2013
    Available online: 01 June 2013
  • Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses.

  • 加载中
    1. Ao Z, Patel A, Tran K, He X, Fowke K, Coombs K, Kobasa D, Kobinger G, and Yao X. 2008. Characterization of a trypsin-dependent avian influenza H5N1-pseudotyped HIV vector system for high throughput screening of inhibitory molecules. Antiviral Res, 79: 12-18.
        doi: 10.1016/j.antiviral.2008.02.001

    2. Braciale T J, Morrison L A, Sweetser M T, Sambrook J, Gething M J, and Braciale V L. 1987. Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol. Rev., 98: 95-114.
        doi: 10.1111/imr.1987.98.issue-1

    3. Bresson J L, Perronne C, Launay O, Gerdil C, Saville M, Wood J, Hoschler K, and Zambon M C. 2006. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet, 367: 1657-1664.
        doi: 10.1016/S0140-6736(06)68656-X

    4. Chen J, Lee K H, Steinhauer D A, Stevens D J, Skehel J J, and Wiley D C. 1998. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell, 95: 409-417.
        doi: 10.1016/S0092-8674(00)81771-7

    5. Claas E C, Osterhaus A D, van Beek R, De Jong J C, Rimmelzwaan G F, Senne D A, Krauss S, Shortridge K F, and Webster R G. 1998. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 351: 472-477.
        doi: 10.1016/S0140-6736(97)11212-0

    6. Ehrlich H J, Muller M, Oh H M, Tambyah P A, Joukhadar C, Montomoli E, Fisher D, Berezuk G, Fritsch S, Low-Baselli A, Vartian N, Bobrovsky R, Pavlova B G, Pollabauer E M, Kistner O, and Barrett P N. 2008. A clinical trial of a whole-virus H5N1 vaccine derived from cell culture. N Engl J Med, 358: 2573-2584.
        doi: 10.1056/NEJMoa073121

    7. Garcia J M, Lagarde N, Ma E S, de Jong M D, and Peiris J S. 2010. Optimization and evaluation of an influenza A (H5) pseudotyped lentiviral particle-based serological assay. J. Clin. Virol., 47: 29-33.
        doi: 10.1016/j.jcv.2009.10.009

    8. Giroglou T, Cinatl J, Rabenau H, Drosten C, Schwalbe H, Doerr H W, and von Laer D. 2004. Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J. Virol., 78: 9007-9015.
        doi: 10.1128/JVI.78.17.9007-9015.2004

    9. Haynes J R, Dokken L, Wiley J A, Cawthon A G, Bigger J, Harmsen A G, and Richardson C. 2009. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine, 27: 530-541.
        doi: 10.1016/j.vaccine.2008.11.011

    10. Herfst S, Schrauwen E J, Linster M, Chutinimitkul S, de Wit E, Munster V J, Sorrell E M, Bestebroer T M, Burke D F, Smith D J, Rimmelzwaan G F, Osterhaus A D, and Fouchier R A. 2012. Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 336: 1534-1541.
        doi: 10.1126/science.1213362

    11. Ho J W, Hershkovitz O, Peiris M, Zilka A, Bar-Ilan A, Nal B, Chu K, Kudelko M, Kam Y W, Achdout H, Mandelboim M, Altmeyer R, Mandelboim O, Bruzzone R, and Porgador A. 2008. H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44. J. Virol., 82: 2028-2032.
        doi: 10.1128/JVI.02065-07

    12. Horimoto T, and Kawaoka Y. 1994. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J. Virol., 68: 3120-3128.

    13. Horimoto T, Nakayama K, Smeekens S P, and Kawaoka Y. 1994. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J. Virol., 68: 6074-6078.

    14. Howard M K, Kistner O, and Barrett P N. 2008. Pre-clinical development of cell culture (Vero)-derived H5N1 pandemic vaccines. Biological Chemistry, 389: 569-577.

    15. Imai M, Watanabe T, Hatta M, Das S C, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher E A, Neumann G, and Kawaoka Y. 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 486: 420-428.

    16. Kistner O, Howard M K, Spruth M, Wodal W, Bruhl P, Gerencer M, Crowe B A, Savidis-Dacho H, Livey I, Reiter M, Mayerhofer I, Tauer C, Grillberger L, Mundt W, Falkner F G, and Barrett P N. 2007. Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine, 25: 6028-6036.
        doi: 10.1016/j.vaccine.2007.05.013

    17. Kong W P, Hood C, Yang Z Y, Wei C J, Xu L, Garcia-Sastre A, Tumpey T M, and Nabel G J. 2006. Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proc. Natl. Acad. Sci. U.S.A., 103: 15987-15991.
        doi: 10.1073/pnas.0607564103

    18. Li S, Liu C, Klimov A, Subbarao K, Perdue M L, Mo D, Ji Y, Woods L, Hietala S, and Bryant M. 1999. Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. J. Infect. Dis., 179: 1132-1138.
        doi: 10.1086/jid.1999.179.issue-5

    19. Lin A H, and Cannon P M. 2002. Use of pseudotyped retroviral vectors to analyze the receptor-binding pocket of hemagglutinin from a pathogenic avian influenza A virus (H7 subtype). Virus Res., 83: 43-56.
        doi: 10.1016/S0168-1702(01)00407-5

    20. Lin J, Zhang J, Dong X, Fang H, Chen J, Su N, Gao Q, Zhang Z, Liu Y, Wang Z, Yang M, Sun R, Li C, Lin S, Ji M, Wang X, Wood J, Feng Z, Wang Y, and Yin W. 2006. Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase I randomised controlled trial. Lancet, 368: 991-997.
        doi: 10.1016/S0140-6736(06)69294-5

    21. Lu B, Tao L, Wang T, Zheng Z, Li B, Chen Z, Huang Y, Hu Q, and Wang H. 2009. Humoral and cellular immune responses induced by 3a DNA vaccines against severe acute respiratory syndrome (SARS) or SARS-like coronavirus in mice. Clin. Vaccine Immunol., 16: 73-77.
        doi: 10.1128/CVI.00261-08

    22. Lu X, Tumpey T M, Morken T, Zaki S R, Cox N J, and Katz J M. 1999. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol, 73: 5903-5911.

    23. Nefkens I, Garcia J M, Ling C S, Lagarde N, Nicholls J, Tang D J, Peiris M, Buchy P, and Altmeyer R. 2007. Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J. Clin. Virol., 39: 27-33.
        doi: 10.1016/j.jcv.2007.02.005

    24. Okumura Y, Takahashi E, Yano M, Ohuchi M, Daidoji T, Nakaya T, Bottcher E, Garten W, Klenk H D, and Kido H. 2010. Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication. J. Virol., 84: 5089-5096.
        doi: 10.1128/JVI.02605-09

    25. Schrauwen E J, Herfst S, Leijten L M, van Run P, Bestebroer T M, Linster M, Bodewes R, Kreijtz J H, Rimmelzwaan G F, Osterhaus A D, Fouchier R A, Kuiken T, and van Riel D. 2012. The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. J Virol, 86: 3975-3984.
        doi: 10.1128/JVI.06828-11

    26. Senne D A, Panigrahy B, Kawaoka Y, Pearson J E, Suss J, Lipkind M, Kida H, and Webster R G. 1996. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis, 40: 425-437.
        doi: 10.2307/1592241

    27. Skehel J J, and Wiley D C. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 69: 531-569.
        doi: 10.1146/annurev.biochem.69.1.531

    28. Song J M, Hossain J, Yoo D G, Lipatov A S, Davis C T, Quan F S, Chen L M, Hogan R J, Donis R O, Compans R W, and Kang S M. 2010. Protective immunity against H5N1 influenza virus by a single dose vaccination with virus-like particles. Virology, 405: 165-175.
        doi: 10.1016/j.virol.2010.05.034

    29. Stech J, Garn H, Wegmann M, Wagner R, and Klenk H D. 2005. A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin. Nat Med, 11: 683-689.
        doi: 10.1038/nm1256

    30. Steinhauer D A. 1999. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology, 258: 1-20.
        doi: 10.1006/viro.1999.9716

    31. Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk H D, and Garten W. 1992. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J., 11: 2407-2414.

    32. Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, Xu X, Lu X, Katz J, Cox N, and Matsuoka Y. 2003. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology, 305: 192-200.
        doi: 10.1006/viro.2002.1742

    33. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, and Cox N. 1998. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science, 279: 393-396.
        doi: 10.1126/science.279.5349.393

    34. Suguitan A L, Marino M P, Desai P D, Chen L M, Matsuoka Y, Donis R O, Jin H, Swayne D E, Kemble G, and Subbarao K. 2009. The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A H5N1 cold-adapted vaccine virus. Virology, 395: 280-288.
        doi: 10.1016/j.virol.2009.09.017

    35. Suguitan A L, Jr., Matsuoka Y, Lau Y F, Santos C P, Vogel L, Cheng L I, Orandle M, and Subbarao K. 2012. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J Virol, 86: 2706-2714.
        doi: 10.1128/JVI.05546-11

    36. Szecsi J, Boson B, Johnsson P, Dupeyrot-Lacas P, Matrosovich M, Klenk H D, Klatzmann D, Volchkov V, and Cosset F L. 2006. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol. J., 3: 70.
        doi: 10.1186/1743-422X-3-70

    37. Tambyah P A, Wilder-Smith A, Pavlova B G, Barrett P N, Oh H M, Hui D S, Yuen K Y, Fritsch S, Aichinger G, Loew-Baselli A, van der Velden M, Maritsch F, Kistner O, and Ehrlich H J. 2012. Safety and immunogenicity of two different doses of a Vero cell-derived, whole virus clade 2 H5N1 (A/Indonesia/05/2005) influenza vaccine. Vaccine, 30: 329-335.
        doi: 10.1016/j.vaccine.2011.10.088

    38. Tao L, Chen J, Zheng Z, Meng J, Zhang Z, Chen Y, Luo H, Li H, Chen Z, Hu Q, and Wang H. 2012. H5N1 influenza virus-like particles produced by transient expression in mammalian cells induce humoral and cellular immune responses in mice. Can J Microbiol, 58: 391-401.
        doi: 10.1139/w2012-006

    39. Temperton N J, Hoschler K, Major D, Nicolson C, Manvell R, Hien V M, Ha do Q, de Jong M, Zambon M, Takeuchi Y, and Weiss R A. 2007. A sensitive retroviral pseudotype assay for influenza H5N1-neutralizing antibodies. Influenza Other Respi Viruses, 1: 105-112.
        doi: 10.1111/irv.2007.1.issue-3

    40. Tsai C G, Caillet C, Hu H X, Zhou F, Ding H, Zhang G L, Zhou B P, Wang S X, Lu S, Buchy P, Deubel V, Vogel F R, and Zhou P. 2009. Measurement of neutralizing antibody responses against H5N1 clades in immunized mice and ferrets using pseudotypes expressing influenza hemagglutinin and neuraminidase. Vaccine, 27: 6777-6790.
        doi: 10.1016/j.vaccine.2009.08.056

    41. Wang S Y, Su C Y, Lin M, Huang S Y, Huang W I, Wang C C, Wu Y T, Cheng T J, Yu H M, Ren C T, Wu C Y, Wong C H, and Cheng Y S. 2009. HA-pseudotyped retroviral vectors for influenza antagonist screening. J Biomol Screen, 14: 294-302.
        doi: 10.1177/1087057108330786

    42. Wang S Y, Su C Y, Lin M G, Huang S Y, Huang W I, Wang C C, Wu Y T, Cheng T J R, Yu H M, Ren C T, Wu C Y, Wong C H, and Cheng Y S E. 2009. HA-Pseudotyped Retroviral Vectors for Influenza Antagonist Screening. J. Biomol. Screen., 14: 294-302.
        doi: 10.1177/1087057108330786

    43. Wang W, Xie H, Ye Z, Vassell R, and Weiss C D. 2010. Characterization of lentiviral pseudotypes with influenza H5N1 hemagglutinin and their performance in neutralization assays. J. Virol. Methods, 165: 305-310.
        doi: 10.1016/j.jviromet.2010.02.009

    44. Wang W, Butler E N, Veguilla V, Vassell R, Thomas J T, Moos M, Ye Z P, Hancock K, and Weiss C D. 2008. Establishment of retroviral pseudotypes with influenza hemagglutinins from H1, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies. J. Virol. Methods, 153: 111-119.
        doi: 10.1016/j.jviromet.2008.07.015

    45. Webby R J, Perez D R, Coleman J S, Guan Y, Knight J H, Govorkova E A, McClain-Moss L R, Peiris J S, Rehg J E, Tuomanen E I, and Webster R G. 2004. Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet, 363: 1099-1103.
        doi: 10.1016/S0140-6736(04)15892-3

    46. WHO. 2013. Cumulative number of confirmed human cases for avian influenza A (H5N1) reported to WHO, 2003-2013.

    47. Wu C Y, Yeh Y C, Yang Y C, Chou C, Liu M T, Wu H S, Chan J T, and Hsiao P W. 2010. Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One, 5: e9784.

    48. Wu Q, Fang L, Wu X, Li B, Luo R, Yu Z, Jin M, Chen H, and Xiao S. 2009. A pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens. Mol. Immunol., 46: 2210-2217.
        doi: 10.1016/j.molimm.2009.04.017

    49. Yin J, Liu S, and Zhu Y. 2013. An overview of the highly pathogenic H5N1 influenza virus. Virol Sin, 28: 3-15.
        doi: 10.1007/s12250-013-3294-9

    50. Zhang S, Xiao L, Zhou H, Yu Z, Chen H, Guo A, and Jin M. 2008. Generation and characterization of an H5N1 avian influenza virus hemagglutinin glycoprotein pseudotyped lentivirus. J. Virol. Methods, 154: 99-103.
        doi: 10.1016/j.jviromet.2008.08.016

    51. Zheng L, Wang F, Yang Z, Chen J, Chang H, and Chen Z. 2009. A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice. BMC Infect. Dis., 9: 17.
        doi: 10.1186/1471-2334-9-17

  • 加载中

Figures(6)

Article Metrics

Article views(3707) PDF downloads(5) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Enhanced Protective Efficacy of H5 Subtype Influenza Vaccine with Modification of the Multibasic Cleavage Site of Hemagglutinin in Retroviral Pseudotypes

      Corresponding author: Zhenhua Zheng, zhengzh@wh.iov.cn
    • 1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
    • 2. Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China

    Abstract: Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses.