Citation: Huawei Mao, Hui-Ling Yen, Yinping Liu, Yu-Lung Lau, J.S. Malik Peiris, Wenwei Tu. Conservation of T cell epitopes between seasonal influenza viruses and the novel influenza A H7N9 virus .VIROLOGICA SINICA, 2014, 29(3) : 170-175.  http://dx.doi.org/10.1007/s12250-014-3473-3

Conservation of T cell epitopes between seasonal influenza viruses and the novel influenza A H7N9 virus

  • Corresponding author: J.S. Malik Peiris, malik@hkucc.hku.hk
    Wenwei Tu, wwtu@hkucc.hku.hk
  • Received Date: 05 May 2014
    Accepted Date: 10 June 2014
    Published Date: 17 June 2014
    Available online: 01 June 2014
  • A novel avian influenza A (H7N9) virus recently emerged in the Yangtze River delta and caused diseases, often severe, in over 130 people. This H7N9 virus appeared to infect humans with greater ease than previous avian influenza virus subtypes such as H5N1 and H9N2. While there are other potential explanations for this large number of human infections with an avian influenza virus, we investigated whether a lack of conserved T-cell epitopes between endemic H1N1 and H3N2 influenza viruses and the novel H7N9 virus contributes to this observation. Here we demonstrate that a number of T cell epitopes are conserved between endemic H1N1 and H3N2 viruses and H7N9 virus. Most of these conserved epitopes are from viral internal proteins. The extent of conservation between endemic human seasonal influenza and avian influenza H7N9 was comparable to that with the highly pathogenic avian influenza H5N1. Thus, the ease of inter-species transmission of H7N9 viruses (compared with avian H5N1 viruses) cannot be attributed to the lack of conservation of such T cell epitopes. On the contrary, our findings predict significant T-cell based cross-reactions in the human population to the novel H7N9 virus. Our findings also have implications for H7N9 virus vaccine design.

  • 加载中
    1. Boni M F, Chau N V, Dong N, Todd S, Nhat N T, de Bruin E, van Beek J, Hien N T, Simmons C P, Farrar J, and Koopmans M. 2013. Population-Level Antibody Estimates to Novel Infl uenza A/H7N9. J Infect Dis, 208: 554-558.
        doi: 10.1093/infdis/jit224

    2. Boon A C, de Mutsert G, van Baarle D, Smith D J, Lapedes A S, Fouchier R A, Sintnicolaas K, Osterhaus A D, and Rimmelzwaan G F. 2004. Recognition of homo-and heterosubtypic variants of influenza A viruses by human CD8+ T lymphocytes. J Immunol, 172: 2453-2460.
        doi: 10.4049/jimmunol.172.4.2453

    3. Chan M, Chan R, Chan L, Mok C, Hui K, Fong J, Tao K, Poon L, Nicholls J, Guan Y, and Peiris J. 2013. Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract.Lancet Respiratory Disease, Published online July 25, 2013, DOI: 10.1016/S2213-2600(13)70138-3.

    4. Chen Y, Liang W, Yang S, Wu N, Gao H, Sheng J, Yao H, Wo J, Fang Q, Cui D, Li Y, Yao X, Zhang Y, Wu H, Zheng S, Diao H, Xia S, Zhang Y, Chan K H, Tsoi H W, Teng J L, Song W, Wang P, Lau S Y, Zheng M, Chan J F, To K K, Chen H, Li L, and Yuen K Y. 2013. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet, 381: 1916-1925.
        doi: 10.1016/S0140-6736(13)60903-4

    5. Cowling B, Freeman G, Wong J, Wu P, Liao Q, Lau E, Wu J, Fielding R, and Leung G. 2013. Preliminary inferences on the age-specific seriousness of human disease caused by avian influenza A(H7N9) infections in China, March to April 2013. Euro Surveill, 18: 20475.

    6. Cowling B J, Jin L, Lau E H, Liao Q, Wu P, Jiang H, Tsang T K, Zheng J, Fang V J, Chang Z, Ni M Y, Zhang Q, Ip D K, Yu J, Li Y, Wang L, Tu W, Meng L, Wu J T, Luo H, Li Q, Shu Y, Li Z, Feng Z, Yang W, Wang Y, Leung G M, and Yu H. 2013. Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet, 382: 129-137.
        doi: 10.1016/S0140-6736(13)61171-X

    7. De Groot A S, Ardito M, Terry F, Levitz L, Ross T M, Moise L, and Martin W. 2013. Low immunogenicity predicted for emerging avian-origin H7N9: Implication for influenza vaccine design. Hum Vaccin Immunother, 9: 950-956.
        doi: 10.4161/hv.24939

    8. Gao H N, Lu H Z, Cao B, Du B, Shang H, Gan J H, Lu S H, Yang Y D, Fang Q, Shen Y Z, Xi X M, Gu Q, Zhou X M, Qu H P, Yan Z, Li F M, Zhao W, Gao Z C, Wang G F, Ruan L X, Wang W H, Ye J, Cao H F, Li X W, Zhang W H, Fang X C, He J, Liang W F, Xie J, Zeng M, Wu X Z, Li J, Xia Q, Jin Z C, Chen Q, Tang C, Zhang Z Y, Hou B M, Feng Z X, Sheng J F, Zhong N S, and Li L J. 2013. Clinical fi ndings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med, 368: 2277-2285.
        doi: 10.1056/NEJMoa1305584

    9. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao G F, Wu G, Wang Y, Yuan Z, and Shu Y. 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 368: 1888-1897.
        doi: 10.1056/NEJMoa1304459

    10. Ip D K, Liao Q, Wu P, Gao Z, Cao B, Feng L, Xu X, Jiang H, Li M, Bao J, Zheng J, Zhang Q, Chang Z, Li Y, Yu J, Liu F, Ni M Y, Wu J T, Cowling B J, Yang W, Leung G M, and Yu H. 2013.Detection of mild to moderate influenza A/H7N9 infection by China's national sentinel surveillance system for influenza-like illness: case series. BMJ, 346: f3693.
        doi: 10.1136/bmj.f3693

    11. Jameson J, Cruz J, Terajima M, and Ennis F A. 1999. Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species. J Immunol, 162: 7578-7583.

    12. Lam T T, Wang J, Shen Y, Zhou B, Duan L, Cheung C L, Ma C, Lycett S J, Leung C Y, Chen X, Li L, Hong W, Chai Y, Zhou L, Liang H, Ou Z, Liu Y, Farooqui A, Kelvin D J, Poon L L, Smith D K, Pybus O G, Leung G M, Shu Y, Webster R G, Webby R J, Peiris J S, Rambaut A, Zhu H, and Guan Y. 2013. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature: doi:10.1038/nature12515.

    13. Lee L Y, Ha do L A, Simmons C, de Jong M D, Chau N V, Schumacher R, Peng Y C, McMichael A J, Farrar J J, Smith G L, Townsend A R, Askonas B A, Rowland-Jones S, and Dong T. 2008. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest, 118: 3478-3490.

    14. Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, Xiang N, Chen E, Tang F, Wang D, Meng L, Hong Z, Tu W, Cao Y, Li L, Ding F, Liu B, Wang M, Xie R, Gao R, Li X, Bai T, Zou S, He J, Hu J, Xu Y, Chai C, Wang S, Gao Y, Jin L, Zhang Y, Luo H, Yu H, Gao L, Pang X, Liu G, Shu Y, Yang W, Uyeki T M, Wang Y, Wu F, and Feng Z. 2013. Preliminary Report: Epidemiology of the Avian Influenza A (H7N9) Outbreak in China. N Engl J Med:DOI: 10.1056/NEJMoa1304617.

    15. Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, Bi Y, Wu Y, Li X, Yan J, Liu W, Zhao G, Yang W, Wang Y, Ma J, Shu Y, Lei F, and Gao G F. 2013. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet, 381: 1926-1932.
        doi: 10.1016/S0140-6736(13)60938-1

    16. Mbawuike I N, Zhang Y, and Couch R B. 2007. Control of mucosal virus infection by influenza nucleoprotein-specific CD8+ cytotoxic T lymphocytes. Respir Res, 8: 44.
        doi: 10.1186/1465-9921-8-44

    17. Mc Michael A J, Gotch F M, Noble G R, and Beare P A. 1983.Cytotoxic T-cell immunity to influenza. N Engl J Med, 309: 13-17.
        doi: 10.1056/NEJM198307073090103

    18. Roti M, Yang J, Berger D, Huston L, James E A, and Kwok W W. 2008. Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus. J Immunol, 180: 1758-1768.
        doi: 10.4049/jimmunol.180.3.1758

    19. Tu W, Mao H, Zheng J, Liu Y, Chiu S S, Qin G, Chan P L, Lam K T, Guan J, Zhang L, Guan Y, Yuen K Y, Peiris J S, and Lau Y L. 2010. Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. J Virol, 84: 6527-6535.
        doi: 10.1128/JVI.00519-10

    20. Viboud C, and Simonsen L. 2013. Timely estimates of influenza A H7N9 infection severity. Lancet, 382: 106-108.
        doi: 10.1016/S0140-6736(13)61447-6

    21. Vita R, Zarebski L, Greenbaum J A, Emami H, Hoof I, Salimi N, Damle R, Sette A, and Peters B. 2010. The immune epitope database 2.0. Nucleic Acids Res, 38: D854-D862.
        doi: 10.1093/nar/gkp1004

    22. Webby R J, Andreansky S, Stambas J, Rehg J E, Webster R G, Doherty P C, and Turner S J. 2003. Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci U S A, 100: 7235-7240.
        doi: 10.1073/pnas.1232449100

    23. WHO. 2013. Number of confirmed human cases of avian influenza A(H7N9) reported to WHO. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/09ReportWebH7N9Number.pdf.

    24. Yu H, Cowling B J, Feng L, Lau E H, Liao Q, Tsang T K, Peng Z, Wu P, Liu F, Fang V J, Zhang H, Li M, Zeng L, Xu Z, Li Z, LuoH, Li Q, Feng Z, Cao B, Yang W, Wu J T, Wang Y, and Leung GM. 2013. Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet, 382: 138-145.
        doi: 10.1016/S0140-6736(13)61207-6

    25. Zhou J, Wang D, Gao R, Zhao B, Song J, Qi X, Zhang Y, Shi Y, Yang L, Zhu W, Bai T, Qin K, Lan Y, Zou S, Guo J, Dong J, Dong L, Zhang Y, Wei H, Li X, Lu J, Liu L, Zhao X, Li X, Huang W, Wen L, Bo H, Xin L, Chen Y, Xu C, Pei Y, Yang Y, Zhang X, Wang S, Feng Z, Han J, Yang W, Gao G F, Wu G, Li D, Wang Y, and Shu Y. 2013. Biological features of novel avian influenza A (H7N9) virus. Nature, 499: 500-503.
        doi: 10.1038/nature12379

  • 加载中

Tables(6)

Article Metrics

Article views(4070) PDF downloads(12) Cited by()

Related
Proportional views

    Conservation of T cell epitopes between seasonal influenza viruses and the novel influenza A H7N9 virus

      Corresponding author: J.S. Malik Peiris, malik@hkucc.hku.hk
      Corresponding author: Wenwei Tu, wwtu@hkucc.hku.hk
    • 1. Department of Paediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
    • 2. Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
    • 3. Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China

    Abstract: A novel avian influenza A (H7N9) virus recently emerged in the Yangtze River delta and caused diseases, often severe, in over 130 people. This H7N9 virus appeared to infect humans with greater ease than previous avian influenza virus subtypes such as H5N1 and H9N2. While there are other potential explanations for this large number of human infections with an avian influenza virus, we investigated whether a lack of conserved T-cell epitopes between endemic H1N1 and H3N2 influenza viruses and the novel H7N9 virus contributes to this observation. Here we demonstrate that a number of T cell epitopes are conserved between endemic H1N1 and H3N2 viruses and H7N9 virus. Most of these conserved epitopes are from viral internal proteins. The extent of conservation between endemic human seasonal influenza and avian influenza H7N9 was comparable to that with the highly pathogenic avian influenza H5N1. Thus, the ease of inter-species transmission of H7N9 viruses (compared with avian H5N1 viruses) cannot be attributed to the lack of conservation of such T cell epitopes. On the contrary, our findings predict significant T-cell based cross-reactions in the human population to the novel H7N9 virus. Our findings also have implications for H7N9 virus vaccine design.