Citation: Yingying Shi, Huilin Tu, Xiong Chen, Yingying Zhang, Liujun Chen, Zhongchun Liu, Jiqun Sheng, Song Han, Jun Yin, Biwen Peng, Xiaohua He, Wanhong Liu. The long non-coding RNA expression profile of Coxsackievirus A16 infected RD cells identified by RNA-seq .VIROLOGICA SINICA, 2016, 31(2) : 131-141.  http://dx.doi.org/10.1007/s12250-015-3693-1

The long non-coding RNA expression profile of Coxsackievirus A16 infected RD cells identified by RNA-seq

  • Wanhong Liu, ORCID: 0000-0003-3271-4342
  • Received Date: 27 November 2015
    Accepted Date: 02 March 2016
    Published Date: 31 March 2016
    Available online: 01 April 2016
  • Coxsackievirus A16 (CVA16) is one of major pathogens of hand, foot and mouth disease (HFMD) in children. Long non-coding RNAs (IncRNAs) have been implicated in various biological processes, but they have not been associated with CVA16 infection. In this study, we comprehensively characterized the landscape of IncRNAs of normal and CVA16 infected rhabdomyosarcoma (RD) cells using RNA-Seq to investigate the functional relevance of IncRNAs. We showed that a total of 760 IncRNAs were upregulated and 1210 IncRNAs were downregulated. Out of these dysregulated IncRNAs, 43.64% were intergenic, 22.31% were sense, 15.89% were intronic, 8.67% were bidirectional, 5.59% were antisense, 3.85% were sRNA host IncRNAs and 0.05% were enhancer. Six dysregulated IncRNAs were validated by quantitative PCR assays and the secondary structures of these IncRNAs were projected. Moreover, we conducted a bioinformatics analysis of an IncRNAs (ENST00000602478) to elucidate the diversity of modification and functions of IncRNAs. In summary, the current study compared the dysregulated IncRNAs profile upon CVA16 challenge and illustrated the intricate relationship between coding and IncRNAs transcripts. These results may not only provide a complete picture of transcription in CVA16 infected cells but also provide novel molecular targets for treatments of HFMD.

  • 加载中
  • 10.1007s12250-015-3693-1.pdf
    10.1007s12250-015-3693-1-ESM1.xls
    10.1007s12250-015-3693-1-ESM2.xls
    10.1007s12250-015-3693-1-ESM3.xls
    10.1007s12250-015-3693-1-ESM4.xls
    1. Alvarez-Dominguez J R, Hu W, Yuan B, Shi J, Park S S, Gromatzky A A, van Oudenaarden A, Lodish H F. 2014. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood, 123: 570-581.
        doi: 10.1182/blood-2013-10-530683

    2. Bertone P, Stolc V, Royce T E, Rozowsky J S, Urban A E, Zhu X, Rinn J L, Tongprasit W, Samanta M, Weissman S, et al. 2004. Global identification of human transcribed sequences with genome tiling arrays. Science, 306: 2242-2246.
        doi: 10.1126/science.1103388

    3. Blake JA, Harris MA. 2008. The Gene Ontology (GO) project: structured vocabularies for molecular biology and their application to genome and expression analysis. Curr Protoc Bioinformatics. doi: 10.1002/0471250953.bi0702s23.

    4. Borodina T, Adjaye J, Sultan M. 2011. A strand-specific library preparation protocol for RNA sequencing. Methods Enzymol, 500: 79-98.
        doi: 10.1016/B978-0-12-385118-5.00005-0

    5. Bu Q, Hu Z, Chen F, Zhu R, Deng Y, Shao X, Li Y, Zhao J, Li H, Zhang B, et al. 2012. Transcriptome analysis of long non-coding RNAs of the nucleus accumbens in cocaine-conditioned mice. J Neurochem, 123: 790-799.
        doi: 10.1111/jnc.12006

    6. Chen X, Tan X, Li J, Jin Y, Gong L, Hong M, Shi Y, Zhu S, Zhang B, Zhang S, et al. 2013. Molecular epidemiology of coxsackievirus A16: intratype and prevalent intertype recombination identified. PLoS One, 8: e82861.
        doi: 10.1371/journal.pone.0082861

    7. Chen Z, Luo Y, Yang W, Ding L, Wang J, Tu J, Geng B, Cui Q, Yang J. 2015. Comparison Analysis of Dysregulated IncRNAs Profile in Mouse Plasma and Liver after Hepatic Ischemia/Reperfusion Injury. PLoS One, 10: e0133462.
        doi: 10.1371/journal.pone.0133462

    8. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, et al. 2008. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res, 18: 1433-1445.
        doi: 10.1101/gr.078378.108

    9. Djebali S, Davis C A, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al. 2012. Landscape of transcription in human cells. Nature, 489: 101-108.
        doi: 10.1038/nature11233

    10. Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y. 2014. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol Biosyst, 10: 2441-2447.
        doi: 10.1039/C4MB00287C

    11. Esteller M. 2011. Non-coding RNAs in human disease. Nat Rev Genet, 12: 861-874.

    12. Fatica A, Bozzoni I. 2014. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet, 15: 7-21.
        doi: 10.1038/nri3777

    13. Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K. 2013. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell, 152: 743-754.
        doi: 10.1016/j.cell.2013.01.015

    14. Gong C, Maquat LE. 2011. IncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature, 470: 284-288.
        doi: 10.1038/nature09701

    15. Guil S, Esteller M. 2012. Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol, 19: 1068-1075.
        doi: 10.1038/nsmb.2428

    16. Huang Y, Liu N, Wang JP, Wang YQ, Yu XL, Wang ZB, Cheng XC, Zou Q. 2012. Regulatory long non-coding RNA and its functions. J Physiol Biochem, 68: 611-618.
        doi: 10.1007/s13105-012-0166-y

    17. Josset L, Tchitchek N, Gralinski L E, Ferris M T, Eisfeld A J, Green RR, Thomas MJ, Tisoncik-Go J, Schroth GP, Kawaoka Y, et al. 2014. Annotation of long non-coding RNAs expressed in collaborative cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biol, 11: 875-890.
        doi: 10.4161/rna.29442

    18. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, et al.2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316: 1484-1488.
        doi: 10.1126/science.1138341

    19. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. 2013. Gene regulation by the act of long non-coding RNA transcription. BMC Biol, 11: 59.
        doi: 10.1186/1741-7007-11-59

    20. Lee JT. 2012. Epigenetic regulation by long noncoding RNAs. Science, 338: 1435-1439.
        doi: 10.1126/science.1231776

    21. Mao Q, Wang Y, Yao X, Bian L, Wu X, Xu M, Liang Z. 2014. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum Vaccin Immunother, 10: 360-367.
        doi: 10.4161/hv.27087

    22. Mattick JS. 2011. The central role of RNA in human development and cognition. FEBS Lett, 585: 1600-1616.
        doi: 10.1016/j.febslet.2011.05.001

    23. Mattick JS, Makunin IV. 2006. Non-coding RNA. Hum Mol Genet, 15. doi: 10.1093/hmg/ddl046.

    24. Mercer TR, Dinger ME, Mattick JS. 2009. Long non-coding RNAs: insights into functions. Nat Rev Genet, 10: 155-159.
        doi: 10.1038/nrg2521

    25. Ouyang J, Zhu X, Chen Y, Wei H, Chen Q, Chi X, Qi B, Zhang L, Zhao Y, Gao GF, et al. 2014. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene tran-scription. Cell Host Microbe, 16:616-626.
        doi: 10.1016/j.chom.2014.10.001

    26. Peng X, Gralinski L, Armour CD, Ferris MT, Thomas MJ, Proll S, Bradel-Tretheway BG, Korth MJ, Castle JC, Biery MC, et al. 2010. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio, 1. doi: 10.1128/mBio.00206-10.

    27. Ren J, Wang X, Zhu L, Hu Z, Gao Q, Yang P, Li X, Wang J, Shen X, Fry EE, et al. 2015. Structures of coxsackievirus A16 capsids with native antigenicity, implications for particle expansion, receptor binding and immunogenicity. J Virol, 89:10500-10511.
        doi: 10.1128/JVI.01102-15

    28. Rybarczyk A, Szostak N, Antczak M, Zok T, Popenda M, Adamiak R, Blazewicz J, Szachniuk M. 2015. New in silico approach to assessing RNA secondary structures with non-canonical base pairs. BMC Bioinformatics, 16: 276.
        doi: 10.1186/s12859-015-0718-6

    29. Shi Y, He X, Zhu G, Tu H, Liu Z, Li W, Han S, Yin J, Peng B, Liu W. 2015. Coxsackievirus A16 elicits incomplete autophagy involving the mTOR and ERK pathways. PLoS One, 10: e0122109.
        doi: 10.1371/journal.pone.0122109

    30. Sun T, Liu Y, Zhang Y, Zhou L. 2014. Molecular phylogeny of coxsackievirus A16. J Clin Microbiol, 52: 3829-3830.
        doi: 10.1128/JCM.01330-14

    31. Tafer H, Hofacker IL. 2008. RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics, 24: 2657-2663.
        doi: 10.1093/bioinformatics/btn193

    32. Trapnell C, Pachter L, Salzberg S L. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25: 1105-1111.
        doi: 10.1093/bioinformatics/btp120

    33. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28: 511-515.
        doi: 10.1038/nbt.1621

    34. Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding RNAs. Mol Cell, 43: 904-914.
        doi: 10.1016/j.molcel.2011.08.018

    35. Wang L, Wang S, Li W. 2012. RSeQC: quality control of RNA-seq experiments. Bioinformatics, 28: 2184-2185.
        doi: 10.1093/bioinformatics/bts356

    36. Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L, Liu B, Yu Y, Yu XF. 2007. 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol, 81: 13112-13124.
        doi: 10.1128/JVI.00892-07

    37. Wei W, Guo H, Li J, Ren S, Wei Z, Bao W, Hu X, Zhao K, Zhang W, Zhou Y, et al. 2014. Circulating HFMD-associated coxsackievirus A16 is genetically and phenotypically distinct from the prototype CV-A16. PLoS One, 9: e94746.
        doi: 10.1371/journal.pone.0094746

    38. Wenzel A, Akbasli E, Gorodkin J. 2012. RIsearch: fast RNA-RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics, 28: 2738-2746.
        doi: 10.1093/bioinformatics/bts519

    39. Winterling C, Koch M, Koeppel M, Garcia-Alcalde F, Karlas A, Meyer TF. 2014. Evidence for a crucial role of a host non-coding RNA in influenza A virus replication. RNA Biol, 11: 66-75.
        doi: 10.4161/rna.27504

    40. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. 2014. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation, 129: 1009-1021.
        doi: 10.1161/CIRCULATIONAHA.113.003863

    41. Yu QS, Guo WS, Cheng LM, Lu YF, Shen JY, Li P. 2015. Glucocorticoids Significantly Influence the Transcriptome of Bone Microvascular Endothelial Cells of Human Femoral Head. Chin Med J (Engl), 128: 1956-1963.
        doi: 10.4103/0366-6999.160564

    42. Zhang Q, Chen CY, Yedavalli VS, Jeang KT. 2013. NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio, 4: e00596-00512.

    43. Zhu G, Zheng Y, Zhang L, Shi Y, Li W, Liu Z, Peng B, Yin J, Liu W, He X. 2013. Coxsackievirus A16 infection triggers apoptosis in RD cells by inducing ER stress. Biochem Biophys Res Commun, 441: 856-861.
        doi: 10.1016/j.bbrc.2013.10.142

    44. Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T. 2015. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci, 16: 18.
        doi: 10.1186/s12868-015-0157-3

  • 加载中

Figures(7)

Article Metrics

Article views(6433) PDF downloads(20) Cited by()

Related
Proportional views

    The long non-coding RNA expression profile of Coxsackievirus A16 infected RD cells identified by RNA-seq

    • Wanhong Liu, ORCID: 0000-0003-3271-4342
    • 1. Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
    • 2. Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China
    • 3. Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
    • 4. Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan 430060, China
    • 5. College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China

    Abstract: Coxsackievirus A16 (CVA16) is one of major pathogens of hand, foot and mouth disease (HFMD) in children. Long non-coding RNAs (IncRNAs) have been implicated in various biological processes, but they have not been associated with CVA16 infection. In this study, we comprehensively characterized the landscape of IncRNAs of normal and CVA16 infected rhabdomyosarcoma (RD) cells using RNA-Seq to investigate the functional relevance of IncRNAs. We showed that a total of 760 IncRNAs were upregulated and 1210 IncRNAs were downregulated. Out of these dysregulated IncRNAs, 43.64% were intergenic, 22.31% were sense, 15.89% were intronic, 8.67% were bidirectional, 5.59% were antisense, 3.85% were sRNA host IncRNAs and 0.05% were enhancer. Six dysregulated IncRNAs were validated by quantitative PCR assays and the secondary structures of these IncRNAs were projected. Moreover, we conducted a bioinformatics analysis of an IncRNAs (ENST00000602478) to elucidate the diversity of modification and functions of IncRNAs. In summary, the current study compared the dysregulated IncRNAs profile upon CVA16 challenge and illustrated the intricate relationship between coding and IncRNAs transcripts. These results may not only provide a complete picture of transcription in CVA16 infected cells but also provide novel molecular targets for treatments of HFMD.