Citation: Tian-Jiao Fan, Li Sun, Xian-Guang Yang, Xia Jin, Wei-Wei Sun, Jian-Hua Wang. The Establishment of an In Vivo HIV-1 Infection Model in Humanized B-NSG Mice .VIROLOGICA SINICA, 2020, 35(4) : 417-425.  http://dx.doi.org/10.1007/s12250-019-00181-6

The Establishment of an In Vivo HIV-1 Infection Model in Humanized B-NSG Mice

cstr: 32224.14.s12250-019-00181-6
  • Corresponding author: Wei-Wei Sun, wwsun@ips.ac.cn, ORCID: http://orcid.org/0000-0002-4578-6292
    Jian-Hua Wang, jh_wang@sibs.ac.cn, ORCID: http://orcid.org/0000-0002-6435-9907
  • Received Date: 12 July 2019
    Accepted Date: 02 December 2019
    Published Date: 21 December 2019
    Available online: 01 August 2020
  • Suitable animal models for human immunodeficiency virus type 1 (HIV-1) infection are important for elucidating viral pathogenesis and evaluating antiviral strategies in vivo. The B-NSG (NOD-PrkdcscidIl2rgtm1/Bcge) mice that have severe immune defect phenotype are examined for the suitability of such a model in this study. Human peripheral blood mononuclear cells (PBMCs) were engrafted into B-NSG mice via mouse tail vein injection, and the repopulated human T-lymphocytes were observed at as early as 3-weeks post-transplantation in mouse peripheral blood and several tissues. The humanized mice could be infected by HIV-1, and the infection recapitulated features of T-lymphocyte dynamic observed in HIV-1 infected humans, meanwhile the administration of combination antiretroviral therapy (cART) suppressed viral replication and restored T lymphocyte abnormalities. The establishment of HIV-1 infected humanized B-NSG mice not only provides a model to study virus and T cell interplays, but also can be a useful tool to evaluate antiviral strategies.

  • 加载中
    1. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, Shin HS, Brooks SF, Knight HL, Eichbaum Q, Yang YG, Sykes M, Walker BD, Freeman GJ, Pillai S, Westmoreland SV, Brander C, Luster AD, Tager AM (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83:7305–7321
        doi: 10.1128/JVI.02207-08

    2. Brooks DG, Hamer DH, Arlen PA, Gao L, Bristol G, Kitchen CM, Berger EA, Zack JA (2003) Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19:413–423
        doi: 10.1016/S1074-7613(03)00236-X

    3. Chung YS, Son JK, Choi B, Joo SY, Lee YS, Park JB, Moon H, Kim TJ, Kim SH, Hong S, Chang J, Kang MS, Kim SJ (2015) Co-transplantation of human fetal thymus, bone and CD34(+) cells into young adult immunodeficient NOD/SCID IL2Rgamma(null) mice optimizes humanized mice that mount adaptive antibody responses. Clin Immunol 157:156–165
        doi: 10.1016/j.clim.2015.02.005

    4. Covassin L, Jangalwe S, Jouvet N, Laning J, Burzenski L, Shultz LD, Brehm MA (2013) Human immune system development and survival of non-obese diabetic (NOD)-SCID IL2rgamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol 174:372–388
        doi: 10.1111/cei.12180

    5. Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, Zink MC, Clements JE (2009) A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol 83:9247–9257
        doi: 10.1128/JVI.00840-09

    6. Evans DT, Silvestri G (2013) Nonhuman primate models in aids research. Curr Opin HIV AIDS 8:255–261
        doi: 10.1097/COH.0b013e328361cee8

    7. Ganick DJ, Sarnwick RD, Shahidi NT, Manning DD (1980) Inability of intravenously injected monocellular suspensions of human bone marrow to establish in the nude mouse. Int Arch Allergy Appl Immunol 62:330–333
        doi: 10.1159/000232530

    8. Gruell H, Klein F (2017) Progress in HIV-1 antibody research using humanized mice. Curr Opin HIV AIDS 12:285–293
        doi: 10.1097/COH.0000000000000368

    9. Hessell AJ, Haigwood NL (2015) Animal models in HIV-1 protection and therapy. Curr Opin HIV AIDS 10:170–176
        doi: 10.1097/COH.0000000000000152

    10. Honeycutt JB, Wahl A, Archin N, Choudhary S, Margolis D, Garcia JV (2013) HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model. Retrovirology 10:121
        doi: 10.1186/1742-4690-10-121

    11. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573
        doi: 10.1182/blood-2005-02-0516

    12. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182
        doi: 10.1182/blood-2001-12-0207

    13. Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, Brouwer D, Barbour S, Kovalev GI, Unutmaz D, Su L (2008) Foxp3 + CD4 + regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2–/–gammac–/– mice in vivo. Blood 112:2858–2868
        doi: 10.1182/blood-2008-03-145946

    14. Kim KC, Choi BS, Kim KC, Park KH, Lee HJ, Cho YK, Kim SI, Kim SS, Oh YK, Kim YB (2016) A simple mouse model for the study of human immunodeficiency virus. AIDS Res Hum Retrovir 32:194–202
        doi: 10.1089/aid.2015.0211

    15. King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M, Atkinson MA, Wasserfall C, Herold KC, Woodland RT, Schmidt MR, Woda BA, Thompson MJ, Rossini AA, Greiner DL (2008) A new Hu-PBL model for the study of human islet alloreactivity based on NOD-SCID mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 126:303–314
        doi: 10.1016/j.clim.2007.11.001

    16. Kline C, Ndjomou J, Franks T, Kiser R, Coalter V, Smedley J, Piatak M Jr, Mellors JW, Lifson JD, Ambrose Z (2013) Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model. PLoS ONE 8:e84275
        doi: 10.1371/journal.pone.0084275

    17. Kumar N, Chahroudi A, Silvestri G (2016) Animal models to achieve an HIV cure. Curr Opin HIV AIDS 11:432–441
        doi: 10.1097/COH.0000000000000290

    18. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG (2006) Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108:487–492
        doi: 10.1182/blood-2005-11-4388

    19. Li C, Wang HB, Kuang WD, Ren XX, Song ST, Zhu HZ, Li Q, Xu LR, Guo HJ, Wu L, Wang JH (2017) Naf1 regulates HIV-1 latency by suppressing viral promoter-driven gene expression in primary CD4+ T cells. J Virol 91:e01830-16

    20. Lu W, Mehraj V, Vyboh K, Cao W, Li T, Routy JP (2015) CD4:CD8 ratio as a frontier marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients. J Int AIDS Soc 18:20052
        doi: 10.7448/IAS.18.1.20052

    21. Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R, Bristol G, An DS, Zack JA (2012) HIV latency in the humanized BLT mouse. J Virol 86:339–347
        doi: 10.1128/JVI.06366-11

    22. McBride JA, Striker R (2017) Imbalance in the game of T cells: what can the CD4/CD8 T-cell ratio tell us about HIV and health? PLoS Pathog 13:e1006624
        doi: 10.1371/journal.ppat.1006624

    23. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639
        doi: 10.1126/science.2971269

    24. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116:193–200
        doi: 10.1182/blood-2010-02-271841

    25. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259
        doi: 10.1038/335256a0

    26. Nixon CC, Mavigner M, Silvestri G, Garcia JV (2017) In vivo models of human immunodeficiency virus persistence and cure strategies. J Infect Dis 215:S142–S151
        doi: 10.1093/infdis/jiw637

    27. Satheesan S, Li H, Burnett JC, Takahashi M, Li S, Wu SX, Synold TW, Rossi JJ, Zhou J (2018) HIV replication and latency in a humanized NSG mouse model during suppressive oral combinational antiretroviral therapy. J Virol 92:e02118-17
        doi: 10.1128/JVI.02118-17

    28. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    29. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130
        doi: 10.1038/nri2017

    30. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA (2011) Transgenic expression of human signal regulatory protein alpha in Rag2–/–gamma(c)–/–mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A 108:13218–13223
        doi: 10.1073/pnas.1109769108

    31. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, Melkus MW, Padgett-Thomas A, Zupancic M, Haase AT, Garcia JV (2007) Intrarectal transmission, systemic infection, and CD4 + T cell depletion in humanized mice infected with HIV-1. J Exp Med 204:705–714
        doi: 10.1084/jem.20062411

    32. Wu X, Liu L, Cheung KW, Wang H, Lu X, Cheung AK, Liu W, Huang X, Li Y, Chen ZW, Chen SM, Zhang T, Wu H, Chen Z (2016) Brain invasion by CD4(+) T cells infected with a transmitted/founder HIV-1BJZS7 during acute stage in humanized mice. J Neuroimmune Pharmacol 11:572–583
        doi: 10.1007/s11481-016-9654-0

    33. Ye C, Wang W, Cheng L, Li G, Wen M, Wang Q, Zhang Q, Li D, Zhou P, Su L (2017) Glycosylphosphatidylinositol-anchored anti-HIV scFv efficiently protects CD4 T cells from HIV-1 infection and deletion in hu-PBL mice. J Virol 91:e10389-16

    34. Zhang L, Su L (2012) Hiv-1 immunopathogenesis in humanized mouse models. Cell Mol Immunol 9:237–244
        doi: 10.1038/cmi.2012.7

  • 加载中

Figures(4)

Article Metrics

Article views(6862) PDF downloads(31) Cited by()

Related
Proportional views

    The Establishment of an In Vivo HIV-1 Infection Model in Humanized B-NSG Mice

      Corresponding author: Wei-Wei Sun, wwsun@ips.ac.cn
      Corresponding author: Jian-Hua Wang, jh_wang@sibs.ac.cn
    • 1. CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
    • 2. University of Chinese Academy of Sciences, Beijing 100039, China
    • 3. College of Life Science, Henan Normal University, Xinxiang 453007, China

    Abstract: Suitable animal models for human immunodeficiency virus type 1 (HIV-1) infection are important for elucidating viral pathogenesis and evaluating antiviral strategies in vivo. The B-NSG (NOD-PrkdcscidIl2rgtm1/Bcge) mice that have severe immune defect phenotype are examined for the suitability of such a model in this study. Human peripheral blood mononuclear cells (PBMCs) were engrafted into B-NSG mice via mouse tail vein injection, and the repopulated human T-lymphocytes were observed at as early as 3-weeks post-transplantation in mouse peripheral blood and several tissues. The humanized mice could be infected by HIV-1, and the infection recapitulated features of T-lymphocyte dynamic observed in HIV-1 infected humans, meanwhile the administration of combination antiretroviral therapy (cART) suppressed viral replication and restored T lymphocyte abnormalities. The establishment of HIV-1 infected humanized B-NSG mice not only provides a model to study virus and T cell interplays, but also can be a useful tool to evaluate antiviral strategies.