Citation: Xuefeng Liu, Yuntao Wu, Lijun Rong. Conditionally Reprogrammed Human Normal Airway Epithelial Cells at ALI: A Physiological Model for Emerging Viruses .VIROLOGICA SINICA, 2020, 35(3) : 280-289.  http://dx.doi.org/10.1007/s12250-020-00244-z

Conditionally Reprogrammed Human Normal Airway Epithelial Cells at ALI: A Physiological Model for Emerging Viruses

  • Corresponding author: Xuefeng Liu, xuefeng.liu@georgetown.edu, ORCID: http://orcid.org/0000-0002-9922-9627
  • Received Date: 16 April 2020
    Accepted Date: 22 May 2020
    Published Date: 17 June 2020
    Available online: 01 June 2020
  • Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.

  • 加载中
    1. Agarwal S, Rimm DL (2012) Making every cell like HeLa a giant step for cell culture. Am J Pathol 180:443-445
        doi: 10.1016/j.ajpath.2011.12.001

    2. Alamri AM, Kang K, Groeneveld S, Wang W, Zhong X, Kallakury B, Hennighausen L, Liu X, Furth PA (2016) Primary cancer cell culture: mammary-optimized vs conditional reprogramming. Endocr Relat Cancer 23:535-554
        doi: 10.1530/ERC-16-0071

    3. Alkhilaiwi F, Wang L, Zhou D, Raudsepp T, Ghosh S, Paul S, Palechor-Ceron N, Brandt S, Luff J, Liu X, Schlegel R, Yuan H (2018) Long-term expansion of primary equine keratinocytes that maintain the ability to differentiate into stratified epidermis. Stem Cell Res Ther 9:181
        doi: 10.1186/s13287-018-0918-x

    4. Alkhilaiwi F, Paul S, Zhou D, Zhang X, Wang F, Palechor-Ceron N, Wilson K, Guha R, Ferrer M, Grant N, Thomas C, Schlegel R, Yuan H (2019) High-throughput screening identifies candidate drugs for the treatment of recurrent respiratory papillomatosis. Papillomavirus Res 8:100181
        doi: 10.1016/j.pvr.2019.100181

    5. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603-607
        doi: 10.1038/nature11003

    6. Beglyarova N, Banina E, Zhou Y, Mukhamadeeva R, Andrianov G, Bobrov E, Lysenko E, Skobeleva N, Gabitova L, Restifo D, Pressman M, Serebriiskii IG, Hoffman JP, Paz K, Behrens D, Khazak V, Jablonski SA, Golemis EA, Weiner LM, Astsaturov I (2016) Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer. Clin Cancer Res 22:6153-6163
        doi: 10.1158/1078-0432.CCR-16-0149

    7. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Møller R, Panis M, Sachs D, Albrecht RA, tenOever BR (2020) SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems. bioRxiv. https://doi.org/10.1101/2020.03.24.004655:2020.2003.2024.004655
        doi: 10.1101/2020.03.24.004655:2020.2003.2024.004655

    8. Borodovsky A, McQuiston TJ, Stetson D, Ahmed A, Whitston D, Zhang J, Grondine M, Lawson D, Challberg SS, Zinda M, Pollok BA, Dougherty BA, D'Cruz CM (2017) Generation of stable PDX derived cell lines using conditional reprogramming. Mol Cancer 16:177
        doi: 10.1186/s12943-017-0745-1

    9. Boström P, Kettunen K, Lamminen T, Heinosalo T, West G, Poutanen M, Rantala J, Taimen P (2018) 462 - High-throughput drug screening using conditionally reprogrammed patient-derived cell lines in bladder cancer. European Urology Supplements 17:e662
        doi: 10.1016/S1569-9056(18)31299-5

    10. Bove PF, Dang H, Cheluvaraju C, Jones LC, Liu X, O'Neal WK, Randell SH, Schlegel R, Boucher RC (2014) Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 50:767-776
        doi: 10.1165/rcmb.2013-0071OC

    11. Brewington JJ, Filbrandt ET, LaRosa FJ 3rd, Moncivaiz JD, Ostmann AJ, Strecker LM, Clancy JP (2018) Generation of human nasal epithelial cell spheroids for individualized cystic fibrosis transmembrane conductance regulator study. J Vis Exp 11:57492

    12. Butler CR, Hynds RE, Gowers KHC, Brown JM, Lee DDH, Teixeira VH, Hamilton NJ, Birchall MA, O'Callaghan C, Janes SM (2016) Co-culture-expanded human basal epithelial stem cells for application in tracheal tissue engineering. The Lancet 387:S23
        doi: 10.1016/S0140-6736(16)00410-4

    13. Chai J, Han L, Zhang J, Han D, Zou L, Zhu Z, Zhao Y, Guo H (2020) Conditional reprogramming inducing clinical cells proliferation: new research tools in tumor and inflammatory-related diseases. Curr Pharm Des. https://doi.org/10.2174/1381612826666200316155252
        doi: 10.2174/1381612826666200316155252

    14. Chapman S, Liu X, Meyers C, Schlegel R, McBride AA (2010) Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J Clin Invest 120:2619-2626
        doi: 10.1172/JCI42297

    15. Charette ST, McCance DJ (2007) The E7 protein from human papillomavirus type 16 enhances keratinocyte migration in an Akt-dependent manner. Oncogene 26:7386-7390
        doi: 10.1038/sj.onc.1210541

    16. Chu HW, Rios C, Huang C, Wesolowska-Andersen A, Burchard EG, O'Connor BP, Fingerlin TE, Nichols D, Reynolds SD, Seibold MA (2015) CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther 22:822-829
        doi: 10.1038/gt.2015.53

    17. Cid Arregui A, Gariglio P, Kanda T, Doorbar J (2012) Oncogenic human papillomaviruses: high-risk human papillomaviruses: towards a better understanding of the mechanisms of viral transformation, latency and immune-escape. Open Virol J 6:160-162
        doi: 10.2174/1874357901206010160

    18. Correa BRS, Hu J, Penalva LOF, Schlegel R, Rimm DL, Galante PAF, Agarwal S (2018) Patient-derived conditionally reprogrammed cells maintain intra-tumor genetic heterogeneity. Sci Rep 8:4097
        doi: 10.1038/s41598-018-22427-1

    19. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, Lee D, Kalsy A, Gomez-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Awad MM, Ramaswamy S, Mino-Kenudson M, Iafrate AJ, Benes CH, Engelman JA (2014) Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346:1480-1486
        doi: 10.1126/science.1254721

    20. Dawood FS, Dalton CB, Durrheim DN, Hope KG (2009) Rates of hospitalisation for acute respiratory illness and the emergence of pandemic (H1N1) 2009 virus in the Hunter New England Area Health Service. Med J Aust 191:573-574
        doi: 10.5694/j.1326-5377.2009.tb03318.x

    21. Deng X, Yan Z, Cheng F, Engelhardt JF, Qiu J (2016) Replication of an autonomous human parvovirus in non-dividing human airway epithelium is facilitated through the DNA damage and repair pathways. PLoS Pathog 12:e1005399
        doi: 10.1371/journal.ppat.1005399

    22. Ellis L, Ku S, Li Q, Azabdaftari G, Seliski J, Olson B, Netherby CS, Tang DG, Abrams SI, Goodrich DW, Pili R (2016) Generation of a C57BL/6 MYC-Driven mouse model and cell line of prostate cancer. Prostate 76:1192-1202
        doi: 10.1002/pros.23206

    23. Feng W, Guo J, Huang H, Xia B, Liu H, Li J, Lin S, Li T, Liu J, Li H (2015) Human normal bronchial epithelial cells: a novel in vitro cell model for toxicity evaluation. PLoS One 10:e0123520

    24. Fenini G, Grossi S, Contassot E, Biedermann T, Reichmann E, French LE, Beer HD (2018) Genome editing of human primary keratinocytes by CRISPR/Cas9 reveals an essential role of the NLRP1 inflammasome in UVB sensing. J Invest Dermatol 138:2644-2652
        doi: 10.1016/j.jid.2018.07.016

    25. Fink SL, Vojtech L, Wagoner J, Slivinski NSJ, Jackson KJ, Wang R, Khadka S, Luthra P, Basler CF, Polyak SJ (2018) The antiviral drug arbidol inhibits zika virus. Sci Rep 8:8989
        doi: 10.1038/s41598-018-27224-4

    26. Friedman AA, Letai A, Fisher DE, Flaherty KT (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15:747-756
        doi: 10.1038/nrc4015

    27. Fu B, Quintero J, Baker CC (2003) Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Cancer Res 63:7815-7824

    28. Gentzsch M, Boyles SE, Cheluvaraju C, Chaudhry IG, Quinney NL, Cho C, Dang H, Liu X, Schlegel R, Randell SH (2017) Pharmacological rescue of conditionally reprogrammed cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 56:568-574
        doi: 10.1165/rcmb.2016-0276MA

    29. Ghittoni R, Accardi R, Chiocca S, Tommasino M (2015) Role of human papillomaviruses in carcinogenesis. Ecancermedicalscience 9:526

    30. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631-637

    31. Hendrickson CM, Matthay MA (2013) Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic. Semin Respir Crit Care Med 34:475-486
        doi: 10.1055/s-0033-1351122

    32. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. https://doi.org/10.1016/j.cell.2020.02.052
        doi: 10.1016/j.cell.2020.02.052

    33. Imai-Matsushima A, Martin-Sancho L, Karlas A, Imai S, Zoranovic T, Hocke AC, Mollenkopf HJ, Berger H, Meyer TF (2018) Long-term culture of distal airway epithelial cells allows differentiation towards alveolar epithelial cells suited for influenza virus studies. EBioMedicine 33:230-241
        doi: 10.1016/j.ebiom.2018.05.032

    34. Jensen TJ, Foster C, Sayej W, Finck CM (2017) Conditional reprogramming of pediatric human esophageal epithelial cells for use in tissue engineering and disease investigation. J Vis Exp. https://doi.org/10.3791/55243
        doi: 10.3791/55243

    35. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB Jr (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79:14614-14621
        doi: 10.1128/JVI.79.23.14614-14621.2005

    36. Jiang S, Wang J, Yang C, Tan R, Hou J, Shi Y, Zhang H, Ma S, Wang J, Zhang M, Philips G, Li Z, Ma J, Yu W, Wang G, Wu Y, Schlegel R, Wang H, Cao S, Guo J, Liu X, Dang Y (2019) Continuous culture of urine-derived bladder cancer cells for precision medicine. Prot Cell 10:902-907
        doi: 10.1007/s13238-019-0649-5

    37. Jin L, Qu Y, Gomez LJ, Chung S, Han B, Gao B, Yue Y, Gong Y, Liu X, Amersi F, Dang C, Giuliano AE, Cui X (2018) Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget 9:11503-11514
        doi: 10.18632/oncotarget.23817

    38. Jonsdottir HR, Marti S, Geerts D, Rodriguez R, Thiel V, Dijkman R (2019) Establishment of primary transgenic human airway epithelial cell cultures to study respiratory virus-host interactions. Viruses 11:1

    39. Kim YI, Kim SG, Kim SM, Kim EH, Park SJ, Yu KM, Chang JH, Kim EJ, Lee S, Casel MAB, Um J, Song MS, Jeong HW, Lai VD, Kim Y, Chin BS, Park JS, Chung KH, Foo SS, Poo H, Mo IP, Lee OJ, Webby RJ, Jung JU, Choi YK (2020) Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. https://doi.org/10.1016/j.chom.2020.03.023
        doi: 10.1016/j.chom.2020.03.023

    40. Klingelhutz AJ, Roman A (2012) Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 424:77-98
        doi: 10.1016/j.virol.2011.12.018

    41. Kong SL, Chui P, Lim B, Salto-Tellez M (2009) Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients. Virus Res 145:260-269
        doi: 10.1016/j.virusres.2009.07.014

    42. Kotha PL, Sharma P, Kolawole AO, Yan R, Alghamri MS, Brockman TL, Gomez-Cambronero J, Excoffon KJ (2015) Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response. PLoS Pathog 11:e1004696
        doi: 10.1371/journal.ppat.1004696

    43. Krawczyk E, Hong SH, Galli S, Trinh E, Wietlisbach L, Misiukiewicz SF, Tilan JU, Chen YS, Schlegel R, Kitlinska J (2020) Murine neuroblastoma cell lines developed by conditional reprogramming preserve heterogeneous phenotypes observed in vivo. Lab Invest 100:38-51
        doi: 10.1038/s41374-019-0297-7

    44. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, Group SW (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953-1966
        doi: 10.1056/NEJMoa030781

    45. LaRanger R, Peters-Hall JR, Coquelin M, Alabi BR, Chen CT, Wright WE, Shay JW (2018) Reconstituting mouse lungs with conditionally reprogrammed human bronchial epithelial cells. Tissue Eng Part A 24:559-568
        doi: 10.1089/ten.tea.2017.0114

    46. Li X, Vargas Buonfiglio LG, Adam RJ, Stoltz DA, Zabner J, Comellas AP (2017) Cystic fibrosis transmembrane conductance regulator potentiation as a therapeutic strategy for pulmonary edema: a proof-of-concept study in pigs. Crit Care Med 45:e1240-e1246
        doi: 10.1097/CCM.0000000000002720

    47. Liu X (2019) Re: Kimmo Kettunen, Peter J. Bostrom, Tarja Lamminen, et alal. Personalized Drug Sensitivity Screening for Bladder Cancer Using Conditionally Reprogrammed Patient-derived Cells. Eur Urol. In press. https://doi.org/10.1016/j.eururo.2019.06.016: Can Patient-derived Cancer Models Change the Costliest Cancer Type? Eur Urol. https://doi.org/10.1016/j.eururo.2019.09.014

    48. Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V, Kelley ML, Baker CC, Huibregtse J, Schlegel R (2005) The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 280:10807-10816
        doi: 10.1074/jbc.M410343200

    49. Liu X, Disbrow GL, Yuan H, Tomaic V, Schlegel R (2007) Myc and human papillomavirus type 16 E7 genes cooperate to immortalize human keratinocytes. J Virol 81:12689-12695
        doi: 10.1128/JVI.00669-07

    50. Liu X, Dakic A, Chen R, Disbrow GL, Zhang Y, Dai Y, Schlegel R (2008) Cell-restricted immortalization by human papillomavirus correlates with telomerase activation and engagement of the hTERT promoter by Myc. J Virol 82:11568-11576
        doi: 10.1128/JVI.01318-08

    51. Liu X, Dakic A, Zhang Y, Dai Y, Chen R, Schlegel R (2009) HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci U S A 106:18780-18785
        doi: 10.1073/pnas.0906357106

    52. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, Haddad BR, Rhim JS, Dritschilo A, Riegel A, McBride A, Schlegel R (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180:599-607
        doi: 10.1016/j.ajpath.2011.10.036

    53. Liu X, Krawczyk E, Suprynowicz FA, Palechor-Ceron N, Yuan H, Dakic A, Simic V, Zheng YL, Sripadhan P, Chen C, Lu J, Hou TW, Choudhury S, Kallakury B, Tang DG, Darling T, Thangapazham R, Timofeeva O, Dritschilo A, Randell SH, Albanese C, Agarwal S, Schlegel R (2017) Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc 12:439-451
        doi: 10.1038/nprot.2016.174

    54. Lu H, Stratton CW, Tang YW (2020) Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol 92:401-402
        doi: 10.1002/jmv.25678

    55. Mahajan AS, Sugita BM, Duttargi AN, Saenz F, Krawczyk E, McCutcheon JN, Fonseca AS, Kallakury B, Pohlmann P, Gusev Y, Cavalli LR (2017) Genomic comparison of early-passage conditionally reprogrammed breast cancer cells to their corresponding primary tumors. PLoS ONE 12:e0186190
        doi: 10.1371/journal.pone.0186190

    56. Martini A, Sfakianos JP, Galsky MD (2019) Conditionally Reprogrammed Patient-derived Cells: a Step Forward Towards Personalized Medicine? Eur Urol 76:435-436
        doi: 10.1016/j.eururo.2019.07.015

    57. Martinovich KM, Iosifidis T, Buckley AG, Looi K, Ling KM, Sutanto EN, Kicic-Starcevich E, Garratt LW, Shaw NC, Montgomery S, Lannigan FJ, Knight DA, Kicic A, Stick SM (2017) Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Sci Rep 7:17971
        doi: 10.1038/s41598-017-17952-4

    58. Mimoto R, Fushimi A, Kazama T, Nogi H, Takeyama H (2018) Conditional Reprogramming Cells Are Novel Tools for Drug Response Assay and the Development of Personalized Medicine in Luminal-B Breast Cancer. J Am Coll Surg 227:e79

    59. Mondal AM, Ma AH, Li G, Krawczyk E, Yuan R, Lu J, Schlegel R, Stamatakis L, Kowalczyk KJ, Philips GK, Pan CX, Liu X (2019) Fidelity of a PDX-CR model for bladder cancer. Biochem Biophys Res Commun 517:49-56
        doi: 10.1016/j.bbrc.2019.06.165

    60. Moorefield EC, Blue RE, Quinney NL, Gentzsch M, Ding S (2018) Generation of renewable mouse intestinal epithelial cell monolayers and organoids for functional analyses. BMC Cell Biol 19:15
        doi: 10.1186/s12860-018-0165-0

    61. Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J (2016) Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell Stem Cell 19:217-231
        doi: 10.1016/j.stem.2016.05.012

    62. Mullenders J, de Jongh E, Brousali A, Roosen M, Blom JPA, Begthel H, Korving J, Jonges T, Kranenburg O, Meijer R, Clevers HC (2019) Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci U S A 116:4567-4574
        doi: 10.1073/pnas.1803595116

    63. Nicolas N, Upadhyay G, Velena A, Kallakury B, Rhim JS, Dritschilo A, Jung M (2019) African-American prostate normal and cancer cells for health disparities research. Adv Exp Med Biol 1164:101-108

    64. Palechor-Ceron N, Suprynowicz FA, Upadhyay G, Dakic A, Minas T, Simic V, Johnson M, Albanese C, Schlegel R, Liu X (2013) Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. Am J Pathol 183:1862-1870
        doi: 10.1016/j.ajpath.2013.08.009

    65. Palechor-Ceron N, Krawczyk E, Dakic A, Simic V, Yuan H, Blancato J, Wang W, Hubbard F, Zheng YL, Dan H, Strome S, Cullen K, Davidson B, Deeken JF, Choudhury S, Ahn PH, Agarwal S, Zhou X, Schlegel R, Furth PA, Pan CX, Liu X (2019) Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks. Cells 8:1

    66. Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22:1392-1401
        doi: 10.1038/nm.4238

    67. Peters-Hall JR, Coquelin ML, Torres MJ, LaRanger R, Alabi BR, Sho S, Calva-Moreno JF, Thomas PJ, Shay JW (2018) Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function. Am J Physiol Lung Cell Mol Physiol 315:L313-L327
        doi: 10.1152/ajplung.00355.2017

    68. Puca L, Bareja R, Prandi D, Shaw R, Benelli M, Karthaus WR, Hess J, Sigouros M, Donoghue A, Kossai M, Gao D, Cyrta J, Sailer V, Vosoughi A, Pauli C, Churakova Y, Cheung C, Deonarine LD, McNary TJ, Rosati R, Tagawa ST, Nanus DM, Mosquera JM, Sawyers CL, Chen Y, Inghirami G, Rao RA, Grandori C, Elemento O, Sboner A, Demichelis F, Rubin MA, Beltran H (2018) Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun 9:2404
        doi: 10.1038/s41467-018-04495-z

    69. Reynolds SD, Rios C, Wesolowska-Andersen A, Zhuang Y, Pinter M, Happoldt C, Hill CL, Lallier SW, Cosgrove GP, Solomon GM, Nichols DP, Seibold MA (2016) Airway progenitor clone formation is enhanced by Y-27632-dependent changes in the transcriptome. Am J Respir Cell Mol Biol 55:323-336
        doi: 10.1165/rcmb.2015-0274MA

    70. Roberts N, Al Mubarak R, Francisco D, Kraft M, Chu HW (2018) Comparison of paired human nasal and bronchial airway epithelial cell responses to rhinovirus infection and IL-13 treatment. Clin Transl Med 7:13
        doi: 10.1186/s40169-018-0189-2

    71. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, Korving J, van Boxtel R, Duarte AA, Lelieveld D, van Hoeck A, Ernst RF, Blokzijl F, Nijman IJ, Hoogstraat M, van de Ven M, Egan DA, Zinzalla V, Moll J, Boj SF, Voest EE, Wessels L, van Diest PJ, Rottenberg S, Vries RGJ, Cuppen E, Clevers H (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(373-386):e310

    72. Saenz FR, Ory V, AlOtaiby M, Rosenfield S, Furlong M, Cavalli LR, Johnson MD, Liu X, Schlegel R, Wellstein A, Riegel AT (2014) Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype. PLoS One 9:e97666
        doi: 10.1371/journal.pone.0097666

    73. Senft D, Leiserson MDM, Ruppin E, Ronai ZA (2017) Precision oncology: the road ahead. Trends Mol Med 23:874-898
        doi: 10.1016/j.molmed.2017.08.003

    74. Shay JW, Peters-Hall JR, Min J, Tedone E, Sho S, Siteni S, Mender I (2018) Human lung epithelial cells divide > 200 population doublings without engaging a telomere maintenance mechanism. bioRxiv. https://doi.org/10.1101/474270:474270
        doi: 10.1101/474270:474270

    75. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I, Bannister R, Park Y, Babusis D, Clarke MO, Mackman RL, Spahn JE, Palmiotti CA, Siegel D, Ray AS, Cihlar T, Jordan R, Denison MR, Baric RS (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 9:1

    76. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schafer A, Dinnon KH 3rd, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS (2020) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 12:1

    77. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, Zhao Y, Liu P, Liang L, Cui P, Wang J, Zhang X, Guan Y, Tan W, Wu G, Chen H, Bu Z (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. https://doi.org/10.1126/science.abb7015
        doi: 10.1126/science.abb7015

    78. Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. https://doi.org/10.1007/s12098-020-03263-6

    79. Smits SL, van den Brand JM, de Lang A, Leijten LM, van Ijcken WF, van Amerongen G, Osterhaus AD, Andeweg AC, Haagmans BL (2011) Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol 85:4234-4245
        doi: 10.1128/JVI.02395-10

    80. Su S, Di Poto C, Roy R, Liu X, Cui W, Kroemer A, Ressom HW (2019) Highlight article: long-term culture and characterization of patient-derived primary hepatocytes using conditional reprogramming. Exp Biol Med (Maywood) 244:857-864
        doi: 10.1177/1535370219855398

    81. Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Hebert JD, Liu X, Yuan H, Cheluvaraju C, Clapp PW, Boucher RC Jr, Kamonjoh CM, Randell SH, Schlegel R (2012) Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci USA 109:20035-20040
        doi: 10.1073/pnas.1213241109

    82. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, Yip CC, Cai JP, Chan JM, Chik TS, Lau DP, Choi CY, Chen LL, Chan WM, Chan KH, Ip JD, Ng AC, Poon RW, Luo CT, Cheng VC, Chan JF, Hung IF, Chen Z, Chen H, Yuen KY (2020) Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30196-1

    83. Tseng CT, Tseng J, Perrone L, Worthy M, Popov V, Peters CJ (2005) Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J Virol 79:9470-9479
        doi: 10.1128/JVI.79.15.9470-9479.2005

    84. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. https://doi.org/10.1016/j.cell.2020.02.058
        doi: 10.1016/j.cell.2020.02.058

    85. Walters BJ, Diao S, Zheng F, Walters BJ, Layman WS, Zuo J (2015) Pseudo-immortalization of postnatal cochlear progenitor cells yields a scalable cell line capable of transcriptionally regulating mature hair cell genes. Sci Rep 5:17792
        doi: 10.1038/srep17792

    86. Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 94:1

    87. Wang L, Ye L, Wei G, Chen Y, Ye L, Wu X, Zeng Z, Wang Y, Yin G, Long X, Li H (2018) Conditional reprogrammed human limbal epithelial cells represent a novel in vitro cell model for drug responses. Biochem Biophys Res Commun 499:735-742
        doi: 10.1016/j.bbrc.2018.03.168

    88. Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, Jiang B (2020) Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. https://doi.org/10.1016/S0140-6736(20)30558-4
        doi: 10.1016/S0140-6736(20)30558-4

    89. Weeber F, Ooft SN, Dijkstra KK, Voest EE (2017) Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol 24:1092-1100
        doi: 10.1016/j.chembiol.2017.06.012

    90. Wolf S, Perez GF, Mukharesh L, Isaza N, Preciado D, Freishtat RJ, Pillai D, Rose MC, Nino G (2017) Conditional reprogramming of pediatric airway epithelial cells: a new human model to investigate early-life respiratory disorders. Pediatr Allergy Immunol 28:810-817
        doi: 10.1111/pai.12810

    91. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C (2020) Virological assessment of hospitalized patients with COVID-2019. Nature. https://doi.org/10.1038/s41586-020-2196-x
        doi: 10.1038/s41586-020-2196-x

    92. World Health Organization (WHO) (2019) Middle east respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/emergencies/mers-cov/en/

    93. World Health Organization (WHO) (2020) Coronavirus disease 2019 (COVID-19) Situation Report—58. 18 March 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

    94. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260-1263
        doi: 10.1126/science.abb2507

    95. Wu Z, McGoogan JM (2020) Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. https://doi.org/10.1001/jama.2020.2648
        doi: 10.1001/jama.2020.2648

    96. Xinaris C (2019) Organoids for replacement therapy: expectations, limitations and reality. Curr Opin Organ Transplant 24:555-561
        doi: 10.1097/MOT.0000000000000680

    97. Yang S, Cao P, Du P, Wu Z, Zhuang Z, Yang L, Yu X, Zhou Q, Feng X, Wang X, Li W, Liu E, Chen J, Chen Y, He D (2020a) Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Ann Transl Med 8:128
        doi: 10.21037/atm.2020.02.66

    98. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y (2020b) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(20)30079-5
        doi: 10.1016/S2213-2600(20)30079-5

    99. Ye G, Pan Z, Pan Y, Deng Q, Chen L, Li J, Li Y, Wang X (2020) Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect. https://doi.org/10.1016/j.jinf.2020.03.001
        doi: 10.1016/j.jinf.2020.03.001

    100. Yu F, Lu Y, Tao L, Jiang YY, Lin DC, Wang L, Petersson F, Yoshiyama H, Koeffler PH, Goh BC, Loh KS (2017) Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions. Sci Rep 7:17359
        doi: 10.1038/s41598-017-17628-z

    101. Yuan H, Myers S, Wang J, Zhou D, Woo JA, Kallakury B, Ju A, Bazylewicz M, Carter YM, Albanese C, Grant N, Shad A, Dritschilo A, Liu X, Schlegel R (2012) Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N Engl J Med 367:1220-1227
        doi: 10.1056/NEJMoa1203055

    102. Yuan H, Krawczyk E, Blancato J, Albanese C, Zhou D, Wang N, Paul S, Alkhilaiwi F, Palechor-Ceron N, Dakic A, Fang S, Choudhary S, Hou TW, Zheng YL, Haddad BR, Usuda Y, Hartmann D, Symer D, Gillison M, Agarwal S, Wangsa D, Ried T, Liu X, Schlegel R (2017) HPV positive neuroendocrine cervical cancer cells are dependent on Myc but not E6/E7 viral oncogenes. Sci Rep 7:45617
        doi: 10.1038/srep45617

    103. Yue J, Shukla R, Accardi R, Zanella-Cleon I, Siouda M, Cros MP, Krutovskikh V, Hussain I, Niu Y, Hu S, Becchi M, Jurdic P, Tommasino M, Sylla BS (2011) Cutaneous human papillomavirus type 38 E7 regulates actin cytoskeleton structure for increasing cell proliferation through CK2 and the eukaryotic elongation factor 1A. J Virol 85:8477-8494
        doi: 10.1128/JVI.02561-10

    104. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814-1820
        doi: 10.1056/NEJMoa1211721

    105. Zhang C, Lee HJ, Shrivastava A, Wang R, McQuiston TJ, Challberg SS, Pollok BA, Wang T (2018a) Long-term in vitro expansion of epithelial stem cells enabled by pharmacological inhibition of PAK1-ROCK-Myosin II and TGF-beta signaling. Cell Rep 25(598-610):e595

    106. Zhang Z, Bai Q, Chen Y, Ye L, Wu X, Long X, Ye L, Liu J, Li H (2018b) Conditionally reprogrammed human normal bronchial epithelial cells express comparable levels of cytochromes p450 and are sensitive to BaP induction. Biochem Biophys Res Commun 503:2132-2138
        doi: 10.1016/j.bbrc.2018.08.001

    107. Zhang C, Shi L, Wang FS (2020) Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. https://doi.org/10.1016/S2468-1253(20)30057-1

    108. Zhou C, Gao C, Xie Y, Xu M (2020a) COVID-19 with spontaneous pneumomediastinum. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30156-0
        doi: 10.1016/S1473-3099(20)30156-0

    109. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B (2020b) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. https://doi.org/10.1016/S0140-6736(20)30566-3
        doi: 10.1016/S0140-6736(20)30566-3

    110. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020c) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270-273
        doi: 10.1038/s41586-020-2012-7

    111. Zhu Y, Yang Y, Guo J, Dai Y, Ye L, Qiu J, Zeng Z, Wu X, Xing Y, Long X, Wu X, Ye L, Wang S, Li H (2017) Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells. Oncotarget 8:15267-15282
        doi: 10.18632/oncotarget.14840

    112. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J (2020) SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. https://doi.org/10.1056/NEJMc2001737
        doi: 10.1056/NEJMc2001737

  • 加载中

Figures(3) / Tables(1)

Article Metrics

Article views(6111) PDF downloads(31) Cited by()

Related
Proportional views

    Conditionally Reprogrammed Human Normal Airway Epithelial Cells at ALI: A Physiological Model for Emerging Viruses

      Corresponding author: Xuefeng Liu, xuefeng.liu@georgetown.edu
    • 1. Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
    • 2. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
    • 3. National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
    • 4. Department of Microbiology and Immunology, University of Illinoi at Chicago, Chicago, IL 60612, USA

    Abstract: Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.