Citation: Junyuan Cao, Guangshun Zhang, Minmin Zhou, Yang Liu, Gengfu Xiao, Wei Wang. Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity .VIROLOGICA SINICA, 2021, 36(2) : 273-280.  http://dx.doi.org/10.1007/s12250-020-00286-3

Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity

  • Corresponding author: Gengfu Xiao, xiaogf@wh.iov.cn, ORCID: 0000-0001-9401-235X
    Wei Wang, wangwei@wh.iov.cn, ORCID: 0000-0002-8696-9773
  • Received Date: 30 April 2020
    Accepted Date: 22 July 2020
    Published Date: 08 September 2020
    Available online: 01 April 2021
  • The membrane-proximal external region (MPER) of Lassa virus (LASV) glycoprotein complex (GPC) is critical in modulating its functionality. Till now, the high-resolution structure of the intact GPC, including MPER is not available. In this study, we used alanine substitution to scan all 16 residues located in LASV MPER. Western blotting and quantification fusion assay showed that the residues located at the C terminus of the HR2 (M414 and L415) and N terminus of the MPER (K417 and Y419) are critical for GPC-mediated membrane fusion function. Furthermore, cell surface biotinylation experiments revealed that M414A, K417A and Y419A expressed similar levels as WT, whereas L415A mutant led to a reduction of mature GPC on the cell surface. Moreover, substitution of these residues with the similar residue such as M414L, L415I, K417R and Y419F would partly compensate the loss of the fusion activity caused by the alanine mutant in these sites. Results from this study showed that several key residues in the MPER region are indispensable to promote the conformational changes that drive fusion events and shed light on the structure analysis of LASV GPC and anti-LASV therapeutics.


  • 加载中
    1. Agnihothram SS, York J, Trahey M, Nunberg JH (2007) Bitopic membrane topology of the stable signal peptide in the tripartite Junin virus GP-C envelope glycoprotein complex. J Virol 81:4331–4337
        doi: 10.1128/JVI.02779-06

    2. Bolken TC, Laquerre S, Zhang Y, Bailey TR, Pevear DC, Kickner SS, Sperzel LE, Jones KF, Warren TK, Amanda Lund S, Kirkwood-Watts DL, King DS, Shurtleff AC, Guttieri MC, Deng Y, Bleam M, Hruby DE (2006) Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antivir Res 69:86–97
        doi: 10.1016/j.antiviral.2005.10.008

    3. Buchmeier MJ, de la Torre JC, Peters CJ (2007) Fields Virology. Arenaviridae: the viruses and their replication, 4th edn, vol 2. Lippincott-Raven, Philadelphia

    4. Burgeson JR, Gharaibeh DN, Moore AL, Larson RA, Amberg SM, Bolken TC, Hruby DE, Dai D (2013) Lead optimization of an acylhydrazone scaffold possessing antiviral activity against Lassa virus. Bioorg Med Chem Lett 23:5840–5843
        doi: 10.1016/j.bmcl.2013.08.103

    5. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081
        doi: 10.1126/science.282.5396.2079

    6. Chen L, Liu Y, Wang S, Sun J, Wang P, Xin Q, Zhang L, Xiao G, Wang W (2017) Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antivir Res 141:140–149
        doi: 10.1016/j.antiviral.2017.02.009

    7. Cohen-Dvashi H, Israeli H, Shani O, Katz A, Diskin R (2016) The role of LAMP1 binding and pH sensing by the spike complex of Lassa virus. J Virol 90:10329–10338
        doi: 10.1128/JVI.01624-16

    8. Eichler R, Lenz O, Garten W, Strecker T (2006) The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J 3:41
        doi: 10.1186/1743-422X-3-41

    9. Eschli B, Quirin K, Wepf A, Weber J, Zinkernagel R, Hengartner H (2006) Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class Ⅰ viral fusion proteins. J Virol 80:5897–5907
        doi: 10.1128/JVI.00008-06

    10. Hastie KM, Zandonatti MA, Kleinfelter LM, Heinrich ML, Rowland MM, Chandran K, Branco LM, Robinson JE, Garry RF, Saphire EO (2017) Structural basis for antibody-mediated neutralization of Lassa virus. Science 356:923–928
        doi: 10.1126/science.aam7260

    11. Hastie KM, Cross RW, Harkins SS, Zandonatti MA, Koval AP, Heinrich ML, Rowland MM, Robinson JE, Geisbert TW, Garry RF, Branco LM, Saphire EO (2019) Convergent structures illuminate features for germline antibody binding and Pan-Lassa virus neutralization. Cell 178(1004–1015):e1014
        doi: 10.1016/j.cell.2019.07.020

    12. Houlihan C, Behrens R (2017) Lassa fever. BMJ 358:j2986

    13. Igonet S, Vaney MC, Vonrhein C, Bricogne G, Stura EA, Hengartner H, Eschli B, Rey FA (2011) X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. Proc Natl Acad Sci U S A 108:19967–19972
        doi: 10.1073/pnas.1108910108

    14. Larson RA, Dai D, Hosack VT, Tan Y, Bolken TC, Hruby DE, Amberg SM (2008) Identification of a broad-spectrum arenavirus entry inhibitor. J Virol 82:10768–10775
        doi: 10.1128/JVI.00941-08

    15. Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, Jin W, Shaginian A, York J, Nunberg JH, Boger DL, Oldstone MB, Kunz S (2008) Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem 283:18734–18742
        doi: 10.1074/jbc.M802089200

    16. Lee J, Nyenhuis DA, Nelson EA, Cafiso DS, White JM, Tamm LK (2017) Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. Proc Natl Acad Sci U S A 114:E7987–E7996
        doi: 10.1073/pnas.1708052114

    17. Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A 98:12701–12705
        doi: 10.1073/pnas.221447598

    18. Li S, Sun Z, Pryce R, Parsy ML, Fehling SK, Schlie K, Siebert CA, Garten W, Bowden TA, Strecker T, Huiskonen JT (2016) Acidic pH-induced conformations and LAMP1 binding of the Lassa Virus glycoprotein spike. PLoS Pathog 12:e1005418
        doi: 10.1371/journal.ppat.1005418

    19. Messina EL, York J, Nunberg JH (2012) Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion. J Virol 86:6138–6145
        doi: 10.1128/JVI.07241-11

    20. Ngo N, Cubitt B, Iwasaki M, de la Torre JC (2015) Identification and mechanism of action of a novel small-molecule inhibitor of arenavirus multiplication. J Virol 89:10924–10933
        doi: 10.1128/JVI.01587-15

    21. Nunberg JH, York J (2012) The curious case of arenavirus entry, and its inhibition. Viruses 4:83–101
        doi: 10.3390/v4010083

    22. Oldstone MB (2002) Arenaviruses. I. The epidemiology molecular and cell biology of arenaviruses. Introduction. Curr Top Microbiol Immunol 262:Ⅴ–Ⅻ
        doi: 10.1007/978-3-642-56029-3

    23. Parsy ML, Harlos K, Huiskonen JT, Bowden TA (2013) Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. J Virol 87:13070–13075
        doi: 10.1128/JVI.02298-13

    24. Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F, Chipot C, Barbieri S, Minola A, Jarrossay D, Tomaras GD, Shen X, Riva A, Tarkowski M, Schwartz O, Bruel T, Dufloo J, Seaman MS, Montefiori DC, Lanzavecchia A, Corti D, Pantaleo G, Weissenhorn W (2019) Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01. Cell Host Microbe. https://doi.org/10.1016/j.chom.2019.09.016
        doi: 10.1016/j.chom.2019.09.016

    25. Raaben M, Jae LT, Herbert AS, Kuehne AI, Stubbs SH, Chou YY, Blomen VA, Kirchhausen T, Dye JM, Brummelkamp TR, Whelan SP (2017) NRP2 and CD63 are host factors for Lujo Virus Cell Entry. Cell Host Microbe 22:688–696.e685
        doi: 10.1016/j.chom.2017.10.002

    26. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446:92–96
        doi: 10.1038/nature05539

    27. Rathbun JY, Droniou ME, Damoiseaux R, Haworth KG, Henley JE, Exline CM, Choe H, Cannon PM (2015) Novel arenavirus entry inhibitors discovered by using a minigenome rescue system for high-throughput drug screening. J Virol 89:8428–8443
        doi: 10.1128/JVI.00997-15

    28. Salamango DJ, Johnson MC (2015) Characterizing the murine leukemia virus envelope glycoprotein membrane-spanning domain for its roles in interface alignment and fusogenicity. J Virol 89:12492–12500
        doi: 10.1128/JVI.01901-15

    29. Saunders AA, Ting JP, Meisner J, Neuman BW, Perez M, de la Torre JC, Buchmeier MJ (2007) Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol 81:5649–5657
        doi: 10.1128/JVI.02759-06

    30. Shankar S, Whitby LR, Casquilho-Gray HE, York J, Boger DL, Nunberg JH (2016) Small-molecule fusion inhibitors bind the pH-sensing stable signal peptide-GP2 subunit interface of the Lassa Virus envelope glycoprotein. J Virol 90:6799–6807
        doi: 10.1128/JVI.00597-16

    31. Shulman A, Katz M, Cohen-Dvashi H, Greenblatt HM, Levy Y, Diskin R (2019) Variations in core packing of GP2 from old world mammarenaviruses in their post-fusion conformations affect membrane-fusion efficiencies. J Mol Biol 431:2095–2111
        doi: 10.1016/j.jmb.2019.04.012

    32. Thomas CJ, Casquilho-Gray HE, York J, DeCamp DL, Dai D, Petrilli EB, Boger DL, Slayden RA, Amberg SM, Sprang SR, Nunberg JH (2011) A specific interaction of small molecule entry inhibitors with the envelope glycoprotein complex of the Junin hemorrhagic fever arenavirus. J Biol Chem 286:6192–6200
        doi: 10.1074/jbc.M110.196428

    33. Wang W, Zhou Z, Zhang L, Wang S, Xiao G (2016) Structure-function relationship of the mammarenavirus envelope glycoprotein. Virol Sin 31:380–394
        doi: 10.1007/s12250-016-3815-4

    34. Wang P, Liu Y, Zhang G, Wang S, Guo J, Cao J, Jia X, Zhang L, Xiao G, Wang W (2018) Screening and identification of Lassa Virus entry inhibitors from an FDA-approved drugs library. J Virol 92:e00954
        doi: 10.1128/JVI.00954-18

    35. Willard KA, Alston JT, Acciani M, Brindley MA (2018) Identification of residues in Lassa Virus glycoprotein subunit 2 that are critical for protein function. Pathogens 8:1
        doi: 10.3390/pathogens8010001

    36. York J, Nunberg JH (2006) Role of the stable signal peptide of Junin arenavirus envelope glycoprotein in pH-dependent membrane fusion. J Virol 80:7775–7780
        doi: 10.1128/JVI.00642-06

    37. York J, Nunberg JH (2007) Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein. Virology 359:72–81
        doi: 10.1016/j.virol.2006.08.048

    38. York J, Nunberg JH (2009) Intersubunit interactions modulate pH-induced activation of membrane fusion by the Junin virus envelope glycoprotein GPC. J Virol 83:4121–4126
        doi: 10.1128/JVI.02410-08

    39. York J, Romanowski V, Lu M, Nunberg JH (2004) The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1–G2 complex. J Virol 78:10783–10792
        doi: 10.1128/JVI.78.19.10783-10792.2004

    40. York J, Agnihothram SS, Romanowski V, Nunberg JH (2005) Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein. Virology 343:267–274
        doi: 10.1016/j.virol.2005.08.030

    41. York J, Dai D, Amberg SM, Nunberg JH (2008) pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors. J Virol 82:10932–10939
        doi: 10.1128/JVI.01140-08

    42. Zhang G, Cao J, Cai Y, Liu Y, Li Y, Wang P, Guo J, Jia X, Zhang M, Xiao G, Guo Y, Wang W (2019) Structure-activity relationship optimization for lassa virus fusion inhibitors targeting the transmembrane domain of GP2. Protein Cell 10:137–142
        doi: 10.1007/s13238-018-0604-x

  • 加载中

Figures(4)

Article Metrics

Article views(5441) PDF downloads(22) Cited by()

Related
Proportional views

    Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity

      Corresponding author: Gengfu Xiao, xiaogf@wh.iov.cn
      Corresponding author: Wei Wang, wangwei@wh.iov.cn
    • 1. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
    • 2. University of the Chinese Academy of Sciences, Beijing 100049, China
    • 3. College of Life Sciences, Nankai University, Tianjin 300353, China

    Abstract: 

    The membrane-proximal external region (MPER) of Lassa virus (LASV) glycoprotein complex (GPC) is critical in modulating its functionality. Till now, the high-resolution structure of the intact GPC, including MPER is not available. In this study, we used alanine substitution to scan all 16 residues located in LASV MPER. Western blotting and quantification fusion assay showed that the residues located at the C terminus of the HR2 (M414 and L415) and N terminus of the MPER (K417 and Y419) are critical for GPC-mediated membrane fusion function. Furthermore, cell surface biotinylation experiments revealed that M414A, K417A and Y419A expressed similar levels as WT, whereas L415A mutant led to a reduction of mature GPC on the cell surface. Moreover, substitution of these residues with the similar residue such as M414L, L415I, K417R and Y419F would partly compensate the loss of the fusion activity caused by the alanine mutant in these sites. Results from this study showed that several key residues in the MPER region are indispensable to promote the conformational changes that drive fusion events and shed light on the structure analysis of LASV GPC and anti-LASV therapeutics.