Citation: Dandi Li, Mengxuan Wang, Tongyao Mao, Mingwen Wang, Qing Zhang, Hong Wang, Lili Pang, Xiaoman Sun, Zhaojun Duan. The Functional Characterization of Bat and Human P[3] Rotavirus VP8*s .VIROLOGICA SINICA, 2021, 36(5) : 1187-1196.  http://dx.doi.org/10.1007/s12250-021-00400-z

The Functional Characterization of Bat and Human P[3] Rotavirus VP8*s

  • Corresponding author: Xiaoman Sun, sunxiaoman88@163.com, ORCID: http://orcid.org/0000-0002-2601-8239
    Zhaojun Duan, zhaojund@126.com, ORCID: http://orcid.org/0000-0003-3090-4150
  • Received Date: 06 January 2021
    Accepted Date: 12 April 2021
    Published Date: 31 May 2021
    Available online: 01 October 2021
  • P[3] rotavirus (RV) has been identified in many species, including human, simian, dog, and bat. Several glycans, including sialic acid, histo-blood group antigens (HBGAs) are reported as RV attachment factors. The glycan binding specificity of different P[3] RV VP8*s were investigated in this study. Human HCR3A and dog P[3] RV VP8*s recognized glycans with terminal sialic acid and hemagglutinated the red blood cells, while bat P[3] VP8* showed neither binding to glycans nor hemagglutination. However, the bat P[3] VP8* mutant of C189Y obtained the ability to hemagglutinate the red blood cells, while human P[3] HCR3A/M2-102 mutants of Y189C lost the ability. Sequence alignment and structural analysis indicated that residue 189 played an important role in the ligand recognition and may contribute to the cross-species transmission. Structural superimposition exhibited that bat P[3] VP8* model was quite different from the simian P[3] Rhesus rotavirus (RRV) P[3] VP8*, indicating that bat P[3] RV was relatively distinct and partially contributed to the no binding to tested glycans. These results promote our understanding of P[3] VP8*/glycans interactions and the potential transmission of bat/human P[3] RVs, offering more insight into the RV infection and prevalence.


  • 加载中
    1. Banyai K, Kemenesi G, Budinski Ⅰ, Foldes F, Zana B, Marton S, Varga-Kugler R, Oldal M, Kurucz K, Jakab F (2017) Candidate new rotavirus species in Schreiber's bats, Serbia. Infect Genet Evol 48: 19-26
        doi: 10.1016/j.meegid.2016.12.002

    2. Blanchard H, Yu X, Coulson BS, von Itzstein M (2007) Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J Mol Biol 367: 1215-1226
        doi: 10.1016/j.jmb.2007.01.028

    3. Cholleti SR, Agravat S, Morris T, Saltz JH, Song X, Cummings RD, Smith DF (2012) Automated motif discovery from glycan array data. OMICS 16: 497-512
        doi: 10.1089/omi.2012.0013

    4. Ciarlet M, Estes MK (1999) Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol 80: 943-948
        doi: 10.1099/0022-1317-80-4-943

    5. Dong H, Qian Y, Nong Y, Zhang Y, Mo Z, Li R (2016) Genomic characterization of an unusual human G3P[3] rotavirus with multiple cross-species reassortment. Bing Du Xue Bao 32: 129-140

    6. Dormitzer PR, Sun ZY, Blixt O, Paulson JC, Wagner G, Harrison SC (2002a) Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol 76: 10512-10517
        doi: 10.1128/JVI.76.20.10512-10517.2002

    7. Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002b) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21: 885-897
        doi: 10.1093/emboj/21.5.885

    8. Doro R, Farkas SL, Martella Ⅴ, Banyai K (2015) Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 13: 1337-1350
        doi: 10.1586/14787210.2015.1089171

    9. Esona MD, Mijatovic-Rustempasic S, Conrardy C, Tong S, Kuzmin Ⅳ, Agwanda B, Breiman RF, Banyai K, Niezgoda M, Rupprecht CE, Gentsch JR, Bowen MD (2010) Reassortant group A rotavirus from straw-colored fruit bat (Eidolon helvum). Emerg Infect Dis 16: 1844-1852
        doi: 10.3201/eid1612.101089

    10. Estes MK (2013) Greenberg HB rotaviruses. In: Knipe DM, Howley PM et al (eds) Fields virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 1347-1401

    11. Fiore L, Greenberg HB, Mackow ER (1991) The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology 181: 553-563
        doi: 10.1016/0042-6822(91)90888-I

    12. He B, Huang X, Zhang F, Tan W, Matthijnssens J, Qin S, Xu L, Zhao Z, Yang L, Wang Q, Hu T, Bao X, Wu J, Tu C (2017) Group a rotaviruses in chinese bats: genetic composition, serology, and evidence for bat-to-human transmission and reassortment. J Virol 91. e02493

    13. He B, Yang F, Yang W, Zhang Y, Feng Y, Zhou J, Xie J, Feng Y, Bao X, Guo H, Li Y, Xia L, Li N, Matthijnssens J, Zhang H, Tu C (2013) Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: a distant relative of feline/canine rotaviruses. J Virol 87: 12357-12366
        doi: 10.1128/JVI.02013-13

    14. Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X (2012) Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 86: 4833-4843
        doi: 10.1128/JVI.05507-11

    15. Isa P, Arias CF, Lopez S (2006) Role of sialic acids in rotavirus infection. Glycoconj J 23: 27-37
        doi: 10.1007/s10719-006-5435-y

    16. Komoto S, Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Ide T, Fukuda S, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Sriwanthana B, Murata T, Uppapong B, Taniguchi K (2020) Genomic characterization of a novel G3P[10] rotavirus strain from a diarrheic child in Thailand: Evidence for bat-to-human zoonotic transmission. Infect Genet Evol 87: 104667

    17. Ma X, Li DD, Sun XM, Guo YQ, Xiang JY, Wang WH, Zhang LX, Gu QJ, Duan ZJ (2015) Binding patterns of rotavirus genotypes P[4], P[6], and P[8] in China with histo-blood group antigens. PLoS One 10: e0134584
        doi: 10.1371/journal.pone.0134584

    18. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella Ⅴ, Mertens PP, Nakagomi O, Parreno Ⅴ, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the rotavirus classification working group (RCWG). Arch Virol 156: 1397-1413
        doi: 10.1007/s00705-011-1006-z

    19. Nyaga MM, Tan Y, Seheri ML, Halpin RA, Akopov A, Stucker KM, Fedorova NB, Shrivastava S, Duncan Steele A, Mwenda JM, Pickett BE, Das SR, Jeffrey Mphahlele M (2018) Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa. Infect Genet Evol 63: 79-88
        doi: 10.1016/j.meegid.2018.05.013

    20. Okitsu S, Hikita T, Thongprachum A, Khamrin P, Takanashi S, Hayakawa S, Maneekarn N, Ushijima H (2018) Detection and molecular characterization of two rare G8P[14] and G3P[3] rotavirus strains collected from children with acute gastroenteritis in Japan. Infect Genet Evol 62: 95-108
        doi: 10.1016/j.meegid.2018.04.011

    21. Papp H, Laszlo B, Jakab F, Ganesh B, De Grazia S, Matthijnssens J, Ciarlet M, Martella Ⅴ, Banyai K (2013) Review of group A rotavirus strains reported in swine and cattle. Vet Microbiol 165: 190-199
        doi: 10.1016/j.vetmic.2013.03.020

    22. Ramani S, Hu L, Venkataram Prasad BV, Estes MK (2016) Diversity in rotavirus-host glycan interactions: a "sweet" spectrum. Cell Mol Gastroenterol Hepatol 2: 263-273
        doi: 10.1016/j.jcmgh.2016.03.002

    23. Sasaki M, Orba Y, Sasaki S, Gonzalez G, Ishii A, Hang'ombe BM, Mweene AS, Ito K, Sawa H (2016) Multi-reassortant G3P[3] group A rotavirus in a horseshoe bat in Zambia. J Gen Virol 97: 2488-2493
        doi: 10.1099/jgv.0.000591

    24. Sun X, Dang L, Li D, Qi J, Wang M, Chai W, Zhang Q, Wang H, Bai R, Tan M, Duan Z (2020) Structural basis of glycan recognition in globally predominant human p[8] rotavirus. Virol Sin 35: 156-170
        doi: 10.1007/s12250-019-00164-7

    25. Sun X, Li D, Qi J, Chai W, Wang L, Wang L, Peng R, Wang H, Zhang Q, Pang L, Kong X, Wang H, Jin M, Gao GF, Duan Z (2018) Glycan binding specificity and mechanism of human and porcine P[6]/P[19] rotavirus VP8*s. J Virol 92: e00538-18

    26. Tsugawa T, Hoshino Y (2008) Whole genome sequence and phylogenetic analyses reveal human rotavirus G3P[3] strains Ro1845 and HCR3A are examples of direct virion transmission of canine/feline rotaviruses to humans. Virology 380: 344-353
        doi: 10.1016/j.virol.2008.07.041

  • 加载中

Figures(8)

Article Metrics

Article views(7872) PDF downloads(4) Cited by()

Related
Proportional views

    The Functional Characterization of Bat and Human P[3] Rotavirus VP8*s

      Corresponding author: Xiaoman Sun, sunxiaoman88@163.com
      Corresponding author: Zhaojun Duan, zhaojund@126.com
    • 1. National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China
    • 2. National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China

    Abstract: 

    P[3] rotavirus (RV) has been identified in many species, including human, simian, dog, and bat. Several glycans, including sialic acid, histo-blood group antigens (HBGAs) are reported as RV attachment factors. The glycan binding specificity of different P[3] RV VP8*s were investigated in this study. Human HCR3A and dog P[3] RV VP8*s recognized glycans with terminal sialic acid and hemagglutinated the red blood cells, while bat P[3] VP8* showed neither binding to glycans nor hemagglutination. However, the bat P[3] VP8* mutant of C189Y obtained the ability to hemagglutinate the red blood cells, while human P[3] HCR3A/M2-102 mutants of Y189C lost the ability. Sequence alignment and structural analysis indicated that residue 189 played an important role in the ligand recognition and may contribute to the cross-species transmission. Structural superimposition exhibited that bat P[3] VP8* model was quite different from the simian P[3] Rhesus rotavirus (RRV) P[3] VP8*, indicating that bat P[3] RV was relatively distinct and partially contributed to the no binding to tested glycans. These results promote our understanding of P[3] VP8*/glycans interactions and the potential transmission of bat/human P[3] RVs, offering more insight into the RV infection and prevalence.