Citation: Jingliang Chen, Yaozu He, Huolin Zhong, Fengyu Hu, Yonghong Li, Yeyang Zhang, Xia Zhang, Weiyin Lin, Quanmin Li, Feilong Xu, Shaozhen Chen, Hui Zhang, Weiping Cai, Linghua Li. Transcriptome analysis of CD4+ T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity .VIROLOGICA SINICA, 2023, 38(3) : 398-408.  http://dx.doi.org/10.1016/j.virs.2023.03.001

Transcriptome analysis of CD4+ T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity

  • Some HIV-infected individuals receiving ART develop low-level viremia (LLV), with a plasma viral load of 50–1000 copies/mL. Persistent low-level viremia is associated with subsequent virologic failure. The peripheral blood CD4+ T cell pool is a source of LLV. However, the intrinsic characteristics of CD4+ T cells in LLV which may contribute to low-level viremia are largely unknown. We analyzed the transcriptome profiling of peripheral blood CD4+ T cells from healthy controls (HC) and HIV-infected patients receiving ART with either virologic suppression (VS) or LLV. To identify pathways potentially responding to increasing viral loads from HC to VS and to LLV, KEGG pathways of differentially expressed genes (DEGs) were acquired by comparing VS with HC (VS-HC group) and LLV with VS (LLV-VS group), and overlapped pathways were analyzed. Characterization of DEGs in key overlapping pathways showed that CD4+ T cells in LLV expressed higher levels of Th1 signature transcription factors (TBX21), toll-like receptors (TLR-4, -6, -7 and -8), anti-HIV entry chemokines (CCL3 and CCL4), and anti-IL-1β factors (ILRN and IL1R2) compared to VS. Our results also indicated activation of the NF-κB and TNF signaling pathways that could promote HIV-1 transcription. Finally, we evaluated the effects of 4 and 17 transcription factors that were upregulated in the VS-HC and LLV-VS groups, respectively, on HIV-1 promoter activity. Functional studies revealed that CXXC5 significantly increased, while SOX5 markedly suppressed HIV-1 transcription. In summary, we found that CD4+ T cells in LLV displayed a distinct mRNA profiling compared to that in VS, which promoted HIV-1 replication and reactivation of viral latency and may eventually contribute to virologic failure in patients with persistent LLV. CXXC5 and SOX5 may serve as targets for the development of latency-reversing agents.

  • 加载中
  • 10.1016j.virs.2023.03.001-ESM1.docx
    10.1016j.virs.2023.03.001-ESM2.xlsx
    10.1016j.virs.2023.03.001-ESM3.xlsx
    10.1016j.virs.2023.03.001-ESM4.xlsx
    10.1016j.virs.2023.03.001-ESM5.xlsx
    1. Anderson, J.A., Archin, N.M., Ince, W., Parker, D., Wiegand, A., Coffin, J.M., Kuruc, J., Eron, J., Swanstrom, R.,Margolis, D.M., 2011. Clonal sequences recovered from plasma from patients with residual HIV-1 viremia and on intensified antiretroviral therapy are identical to replicating viral RNAs recovered from circulating resting CD4+ T cells. J Virol, 85, 5220-5223.

    2. Banerjee, A., Li, L., Pirrone, V., Krebs, F.C., Wigdahl, B.,Nonnemacher, M.R., 2017. cAMP Signaling Enhances HIV-1 Long Terminal Repeat (LTR)-directed Transcription and Viral Replication in Bone Marrow Progenitor Cells. Clin Med Insights Pathol, 10, 1179555717694535.

    3. Barbian, H.J., Seaton, M.S., Narasipura, S.D., Wallace, J., Rajan, R., Sha, B.E.,Al-Harthi, L., 2022. beta-catenin regulates HIV latency and modulates HIV reactivation. PLoS Pathog, 18, e1010354.

    4. Bosque, A.,Planelles, V., 2009. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood, 113, 58-65.

    5. Brenchley, J.M., Price, D.A., Schacker, T.W., Asher, T.E., Silvestri, G., Rao, S., Kazzaz, Z., Bornstein, E., Lambotte, O., Altmann, D., Blazar, B.R., Rodriguez, B., Teixeira-Johnson, L., Landay, A., Martin, J.N., Hecht, F.M., Picker, L.J., Lederman, M.M., Deeks, S.G.,Douek, D.C., 2006. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med, 12, 1365-1371.

    6. Browne, E.P., 2020. The Role of Toll-Like Receptors in Retroviral Infection. Microorganisms, 8.

    7. Casazza, J.P., Brenchley, J.M., Hill, B.J., Ayana, R., Ambrozak, D., Roederer, M., Douek, D.C., Betts, M.R.,Koup, R.A., 2009. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection. PLoS Pathog, 5, e1000646.

    8. Caselli, E., Benedetti, S., Gentili, V., Grigolato, J.,Di Luca, D., 2012. Short communication:activating transcription factor 4 (ATF4) promotes HIV type 1 activation. AIDS Res Hum Retroviruses, 28, 907-912.

    9. Chinese Medical Association, Chinese Center for Disease Control and Prevention. 2021. Chinese guidelines for diagnosis and treatment of HIV/AIDS (2021 edition). Zhonghua Nei Ke Za Zhi, 60, 1106-1128.

    10. Claireaux, M., Robinot, R., Kervevan, J., Patgaonkar, M., Staropoli, I., Brelot, A., Nouel, A., Gellenoncourt, S., Tang, X., Hery, M., Volant, S., Perthame, E., Avettand-Fenoel, V., Buchrieser, J., Cokelaer, T., Bouchier, C., Ma, L., Boufassa, F., Hendou, S., Libri, V., Hasan, M., Zucman, D., De Truchis, P., Schwartz, O., Lambotte, O.,Chakrabarti, L.A., 2022. Low CCR5 expression protects HIV-specific CD4+ T cells of elite controllers from viral entry. Nat Commun, 13, 521.

    11. Clerici, M.,Shearer, G.M., 1993. A TH1——>TH2 switch is a critical step in the etiology of HIV infection. Immunol Today, 14, 107-111.

    12. Crespo-Bermejo, C., De Arellano, E.R., Lara-Aguilar, V., Valle-Millares, D., Gomez-Lus, M.L., Madrid, R., Martin-Carbonero, L.,Briz, V., 2021. Persistent low-Level viremia in persons living with HIV undertreatment:An unresolved status. Virulence, 12, 2919-2931.

    13. Doitsh, G., Cavrois, M., Lassen, K.G., Zepeda, O., Yang, Z., Santiago, M.L., Hebbeler, A.M.,Greene, W.C., 2010. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell, 143, 789-801.

    14. Doitsh, G., Galloway, N.L., Geng, X., Yang, Z., Monroe, K.M., Zepeda, O., Hunt, P.W., Hatano, H., Sowinski, S., Munoz-Arias, I.,Greene, W.C., 2014. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 505, 509-514.

    15. Dutilleul, A., Rodari, A.,Van Lint, C., 2020. Depicting HIV-1 Transcriptional Mechanisms:A Summary of What We Know. Viruses, 12.

    16. Eisenberg, S.P., Evans, R.J., Arend, W.P., Verderber, E., Brewer, M.T., Hannum, C.H.,Thompson, R.C., 1990. Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature, 343, 341-346.

    17. Giri, J.G., Wells, J., Dower, S.K., Mccall, C.E., Guzman, R.N., Slack, J., Bird, T.A., Shanebeck, K., Grabstein, K.H., Sims, J.E.,Et Al., 1994. Elevated levels of shed type II IL-1 receptor in sepsis. Potential role for type II receptor in regulation of IL-1 responses. J Immunol, 153, 5802-5809.

    18. Goffin, V., Demonte, D., Vanhulle, C., De Walque, S., De Launoit, Y., Burny, A., Collette, Y.,Van Lint, C., 2005. Transcription factor binding sites in the pol gene intragenic regulatory region of HIV-1 are important for virus infectivity. Nucleic Acids Res, 33, 4285-4310.

    19. Gonzalez-Serna, A., Swenson, L.C., Watson, B., Zhang, W., Nohpal, A., Auyeung, K., Montaner, J.S.,Harrigan, P.R., 2016. A single untimed plasma drug concentration measurement during low-level HIV viremia predicts virologic failure. Clin Microbiol Infect, 22, 1004 e1009-1004 e1016.

    20. Hannum, C.H., Wilcox, C.J., Arend, W.P., Joslin, F.G., Dripps, D.J., Heimdal, P.L., Armes, L.G., Sommer, A., Eisenberg, S.P.,Thompson, R.C., 1990. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature, 343, 336-340.

    21. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H.,Bauer, S., 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303, 1526-1529.

    22. Henderson, A., Holloway, A., Reeves, R.,Tremethick, D.J., 2004. Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. Mol Cell Biol, 24, 389-397.

    23. Henrick, B.M., Yao, X.D., Rosenthal, K.L.,Team, I.S., 2015. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation. Front Immunol, 6, 426.

    24. Hermans, L.E., Moorhouse, M., Carmona, S., Grobbee, D.E., Hofstra, L.M., Richman, D.D., Tempelman, H.A., Venter, W.D.F.,Wensing, A.M.J., 2018. Effect of HIV-1 low-level viraemia during antiretroviral therapy on treatment outcomes in WHO-guided South African treatment programmes:a multicentre cohort study. Lancet Infect Dis, 18, 188-197.

    25. Heufler, C., Koch, F., Stanzl, U., Topar, G., Wysocka, M., Trinchieri, G., Enk, A., Steinman, R.M., Romani, N.,Schuler, G., 1996. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol, 26, 659-668.

    26. Kang, J.Y., Nan, X., Jin, M.S., Youn, S.J., Ryu, Y.H., Mah, S., Han, S.H., Lee, H., Paik, S.G.,Lee, J.O., 2009. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity, 31, 873-884.

    27. Kolakowska, A., Maresca, A.F., Collins, I.J.,Cailhol, J., 2019. Update on Adverse Effects of HIV Integrase Inhibitors. Curr Treat Options Infect Dis, 11, 372-387.

    28. Konstantopoulos, C., Ribaudo, H., Ragland, K., Bangsberg, D.R.,Li, J.Z., 2015. Antiretroviral regimen and suboptimal medication adherence are associated with low-level human immunodeficiency virus viremia. Open Forum Infect Dis, 2, ofu119.

    29. Liang, Z., Xu, J.,Gu, C., 2020. Novel role of the SRY-related high-mobility-group box D gene in cancer. Semin Cancer Biol, 67, 83-90.

    30. Liu, X., Wang, Y., Lu, H., Li, J., Yan, X., Xiao, M., Hao, J., Alekseev, A., Khong, H., Chen, T., Huang, R., Wu, J., Zhao, Q., Wu, Q., Xu, S., Wang, X., Jin, W., Yu, S., Wang, Y., Wei, L., Wang, A., Zhong, B., Ni, L., Liu, X., Nurieva, R., Ye, L., Tian, Q., Bian, X.W.,Dong, C., 2019. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature, 567, 525-529.

    31. Ma, S., Wan, X., Deng, Z., Shi, L., Hao, C., Zhou, Z., Zhou, C., Fang, Y., Liu, J., Yang, J., Chen, X., Li, T., Zang, A., Yin, S., Li, B., Plumas, J., Chaperot, L., Zhang, X., Xu, G., Jiang, L., Shen, N., Xiong, S., Gao, X., Zhang, Y.,Xiao, H., 2017. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med, 214, 1471-1491.

    32. Macedo, A.B., Novis, C.L.,Bosque, A., 2019. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front Immunol, 10, 2450.

    33. Maekawa, Y., Tsukumo, S., Chiba, S., Hirai, H., Hayashi, Y., Okada, H., Kishihara, K.,Yasutomo, K., 2003. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity, 19, 549-559.

    34. Martinez, V., Costagliola, D., Bonduelle, O., N'go, N., Schnuriger, A., Théodorou, I., Clauvel, J.P., Sicard, D., Agut, H., Debré, P., Rouzioux, C.,Autran, B., 2005. Combination of HIV-1-specific CD4 Th1 cell responses and IgG2 antibodies is the best predictor for persistence of long-term nonprogression. J Infect Dis, 191, 2053-2063.

    35. Mclaren, P.J., Gawanbacht, A., Pyndiah, N., Krapp, C., Hotter, D., Kluge, S.F., Gotz, N., Heilmann, J., Mack, K., Sauter, D., Thompson, D., Perreaud, J., Rausell, A., Munoz, M., Ciuffi, A., Kirchhoff, F.,Telenti, A., 2015. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology, 12, 41.

    36. Meas, H.Z., Haug, M., Beckwith, M.S., Louet, C., Ryan, L., Hu, Z., Landskron, J., Nordbo, S.A., Tasken, K., Yin, H., Damas, J.K.,Flo, T.H., 2020. Sensing of HIV-1 by TLR8 activates human T cells and reverses latency. Nat Commun, 11, 147.

    37. Nickel, K., Halfpenny, N.J.A., Snedecor, S.J.,Punekar, Y.S., 2021. Comparative efficacy, safety and durability of dolutegravir relative to common core agents in treatment-naive patients infected with HIV-1:an update on a systematic review and network meta-analysis. BMC Infect Dis, 21, 222.

    38. Palich, R., Wirden, M., Peytavin, G., Le, M.P., Seang, S., Abdi, B., Schneider, L., Tubiana, R., Valantin, M.A., Paccoud, O., Soulie, C., Calvez, V., Katlama, C.,Marcelin, A.G., 2020. Persistent low-level viraemia in antiretroviral treatment-experienced patients is not linked to viral resistance or inadequate drug concentrations. J Antimicrob Chemother, 75, 2981-2985.

    39. Pasquereau, S., Kumar, A.,Herbein, G., 2017. Targeting TNF and TNF Receptor Pathway in HIV-1 Infection:from Immune Activation to Viral Reservoirs. Viruses, 9.

    40. Pei, X.H., Lv, X.Q.,Li, H.X., 2014. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1. Biochem Biophys Res Commun, 446, 322-327.

    41. Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B.,Beutler, B., 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science, 282, 2085-2088.

    42. Presky, D.H., Yang, H., Minetti, L.J., Chua, A.O., Nabavi, N., Wu, C.Y., Gately, M.K.,Gubler, U., 1996. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci U S A, 93, 14002-14007.

    43. Rabbi, M.F., Saifuddin, M., Gu, D.S., Kagnoff, M.F.,Roebuck, K.A., 1997. U5 region of the human immunodeficiency virus type 1 long terminal repeat contains TRE-like cAMP-responsive elements that bind both AP-1 and CREB/ATF proteins. Virology, 233, 235-245.

    44. Rasquinha, M.T., Sur, M., Lasrado, N.,Reddy, J., 2021. IL-10 as a Th2 Cytokine:Differences Between Mice and Humans. J Immunol, 207, 2205-2215.

    45. Reus, S., Portilla, J., Sánchez-Payá, J., Giner, L., Francés, R., Such, J., Boix, V., Merino, E.,Gimeno, A., 2013. Low-level HIV viremia is associated with microbial translocation and inflammation. J Acquir Immune Defic Syndr, 62, 129-134.

    46. Rubbo, P.A., Tuaillon, E., Bollore, K., Foulongne, V., Bourdin, A., Nagot, N., Van De Perre, P., Desgranges, C., Israel-Biet, D.,Vendrell, J.P., 2011. The potential impact of CD4+ T cell activation and enhanced Th1/Th2 cytokine ratio on HIV-1 secretion in the lungs of individuals with advanced AIDS and active pulmonary infection. Clin Immunol, 139, 142-154.

    47. Sun, C., Ban, Y., Wang, K., Sun, Y.,Zhao, Z., 2019. SOX5 promotes breast cancer proliferation and invasion by transactivation of EZH2. Oncol Lett, 17, 2754-2762.

    48. Swenson, L.C., Min, J.E., Woods, C.K., Cai, E., Li, J.Z., Montaner, J.S., Harrigan, P.R.,Gonzalez-Serna, A., 2014. HIV drug resistance detected during low-level viraemia is associated with subsequent virologic failure. AIDS, 28, 1125-1134.

    49. Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G.,Glimcher, L.H., 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100, 655-669.

    50. Tobin, N.H., Learn, G.H., Holte, S.E., Wang, Y., Melvin, A.J., Mckernan, J.L., Pawluk, D.M., Mohan, K.M., Lewis, P.F., Mullins, J.I.,Frenkel, L.M., 2005. Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes:expression of archival virus and replication of virus. J Virol, 79, 9625-9634.

    51. Torres, B., Rallon, N.I., Lonca, M., Diaz, A., Alos, L., Martinez, E., Cruceta, A., Arnaiz, J.A., Leal, L., Lucero, C., Leon, A., Sanchez, M., Negredo, E., Clotet, B., Gatell, J.M., Benito, J.M.,Garcia, F., 2014. Immunological function restoration with lopinavir/ritonavir versus efavirenz containing regimens in HIV-infected patients:a randomized clinical trial. AIDS Res Hum Retroviruses, 30, 425-433.

    52. Tsuchiya, Y., Naito, T., Tenno, M., Maruyama, M., Koseki, H., Taniuchi, I.,Naoe, Y., 2016. ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1:implications in repression of CD40L expression in CD8+ cytotoxic T cells. J Leukoc Biol, 100, 327-338.

    53. Van Den Eeckhout, B., Tavernier, J.,Gerlo, S., 2020. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol, 11, 621931.

    54. Viglianti, G.A., Planelles, V.,Hanley, T.M., 2021. Interactions with Commensal and Pathogenic Bacteria Induce HIV-1 Latency in Macrophages through Altered Transcription Factor Recruitment to the LTR. J Virol, 10.1128/JVI.02141-20.

    55. World Health Organization, 2016. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection:Recommendations for a Public Health Approach. Geneva.

    56. Xiong, X., Tu, S., Wang, J., Luo, S.,Yan, X., 2019. CXXC5:A novel regulator and coordinator of TGF-beta, BMP and Wnt signaling. J Cell Mol Med, 23, 740-749.

    57. Yang, R., Mele, F., Worley, L., Langlais, D., Rosain, J., Benhsaien, I., Elarabi, H., Croft, C.A., Doisne, J.M., Zhang, P., Weisshaar, M., Jarrossay, D., Latorre, D., Shen, Y., Han, J., Ogishi, M., Gruber, C., Markle, J., Al Ali, F., Rahman, M., Khan, T., Seeleuthner, Y., Kerner, G., Husquin, L.T., Maclsaac, J.L., Jeljeli, M., Errami, A., Ailal, F., Kobor, M.S., Oleaga-Quintas, C., Roynard, M., Bourgey, M., El Baghdadi, J., Boisson-Dupuis, S., Puel, A., Batteux, F., Rozenberg, F., Marr, N., Pan-Hammarstrom, Q., Bogunovic, D., Quintana-Murci, L., Carroll, T., Ma, C.S., Abel, L., Bousfiha, A., Di Santo, J.P., Glimcher, L.H., Gros, P., Tangye, S.G., Sallusto, F., Bustamante, J.,Casanova, J.L., 2020. Human T-bet Governs Innate and Innate-like Adaptive IFN-gamma Immunity against Mycobacteria. Cell, 183, 1826-1847 e1831.

    58. Yang, X., Chen, Y.,Gabuzda, D., 1999. ERK MAP kinase links cytokine signals to activation of latent HIV-1 infection by stimulating a cooperative interaction of AP-1 and NF-kappaB. J Biol Chem, 274, 27981-27988.

    59. Yeung, M.L., Houzet, L., Yedavalli, V.S.,Jeang, K.T., 2009. A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem, 284, 19463-19473.

    60. Younas, M., Psomas, C., Reynes, C., Cezar, R., Kundura, L., Portales, P., Merle, C., Atoui, N., Fernandez, C., Le Moing, V., Barbuat, C., Sotto, A., Sabatier, R., Winter, A., Fabbro, P., Vincent, T., Reynes, J.,Corbeau, P., 2021. Residual Viremia Is Linked to a Specific Immune Activation Profile in HIV-1-Infected Adults Under Efficient Antiretroviral Therapy. Front Immunol, 12, 663843.

    61. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V.,Gerstein, M., 2007. The importance of bottlenecks in protein networks:correlation with gene essentiality and expression dynamics. PLoS Comput Biol, 3, e59.

    62. Zhu, C., Sakuishi, K., Xiao, S., Sun, Z., Zaghouani, S., Gu, G., Wang, C., Tan, D.J., Wu, C., Rangachari, M., Pertel, T., Jin, H.T., Ahmed, R., Anderson, A.C.,Kuchroo, V.K., 2015. An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat Commun, 6, 6072.

  • 加载中

Article Metrics

Article views(1857) PDF downloads(19) Cited by()

Related
Proportional views

    Transcriptome analysis of CD4+ T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity

      Corresponding author: Hui Zhang, zhangh92@mail.sysu.edu.cn
      Corresponding author: Weiping Cai, gz8hcwp@126.com
      Corresponding author: Linghua Li, llheliza@126.com
    • a. Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China;
    • b. Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China;
    • c. Guangzhou Laboratory, Bio-Island, Guangzhou, 510320, China

    Abstract: Some HIV-infected individuals receiving ART develop low-level viremia (LLV), with a plasma viral load of 50–1000 copies/mL. Persistent low-level viremia is associated with subsequent virologic failure. The peripheral blood CD4+ T cell pool is a source of LLV. However, the intrinsic characteristics of CD4+ T cells in LLV which may contribute to low-level viremia are largely unknown. We analyzed the transcriptome profiling of peripheral blood CD4+ T cells from healthy controls (HC) and HIV-infected patients receiving ART with either virologic suppression (VS) or LLV. To identify pathways potentially responding to increasing viral loads from HC to VS and to LLV, KEGG pathways of differentially expressed genes (DEGs) were acquired by comparing VS with HC (VS-HC group) and LLV with VS (LLV-VS group), and overlapped pathways were analyzed. Characterization of DEGs in key overlapping pathways showed that CD4+ T cells in LLV expressed higher levels of Th1 signature transcription factors (TBX21), toll-like receptors (TLR-4, -6, -7 and -8), anti-HIV entry chemokines (CCL3 and CCL4), and anti-IL-1β factors (ILRN and IL1R2) compared to VS. Our results also indicated activation of the NF-κB and TNF signaling pathways that could promote HIV-1 transcription. Finally, we evaluated the effects of 4 and 17 transcription factors that were upregulated in the VS-HC and LLV-VS groups, respectively, on HIV-1 promoter activity. Functional studies revealed that CXXC5 significantly increased, while SOX5 markedly suppressed HIV-1 transcription. In summary, we found that CD4+ T cells in LLV displayed a distinct mRNA profiling compared to that in VS, which promoted HIV-1 replication and reactivation of viral latency and may eventually contribute to virologic failure in patients with persistent LLV. CXXC5 and SOX5 may serve as targets for the development of latency-reversing agents.

    Reference (62) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return