Citation: Baoxin Zhao, Hongxiu Qiao, Yan Zhao, Zhiyun Gao, Weijie Wang, Yan Cui, Jian Li, Zhanjun Guo, Xia Chuai, Sandra Chiu. HBV precore G1896A mutation promotes growth of hepatocellular carcinoma cells by activating ERK/MAPK pathway .VIROLOGICA SINICA, 2023, 38(5) : 680-689.  http://dx.doi.org/10.1016/j.virs.2023.06.004

HBV precore G1896A mutation promotes growth of hepatocellular carcinoma cells by activating ERK/MAPK pathway

  • Chronic hepatitis B virus (HBV) infection is one of the leading causes of hepatocellular carcinoma (HCC). The HBV genome is prone to mutate and several variants are closely related to the malignant transformation of liver disease. G1896A mutation (G to A mutation at nucleotide 1896) is one of the most frequently observed mutations in the precore region of HBV, which prevents HBeAg expression and is strongly associated with HCC. However, the mechanisms by which this mutation causes HCC are unclear. Here, we explored the function and molecular mechanisms of the G1896A mutation during HBV-associated HCC. G1896A mutation remarkably enhanced the HBV replication in vitro. Moreover, it increased tumor formation and inhibited apoptosis of hepatoma cells, and decreased the sensitivity of HCC to sorafenib. Mechanistically, the G1896A mutation could activate ERK/MAPK pathway to enhanced sorafenib resistance in HCC cells and augmented cell survival and growth. Collectively, our study demonstrates for the first time that the G1896A mutation has a dual regulatory role in exacerbating HCC severity and sheds some light on the treatment of G1896A mutation-associated HCC patients.

  • 加载中
  • 10.1016j.virs.2023.06.004-ESM.docx
    1. Al-Qahtani, A.A., Al-Anazi, M.R., Nazir, N., Abdo, A.A., Sanai, F.M., Al-Hamoudi, W.K., Alswat, K.A., Al-Ashgar, H.I., Khan, M.Q., Albenmousa, A., El-Shamy, A., Alanazi, S.K., Dela Cruz, D., Bohol, M.F.F.,Al-Ahdal, M.N., 2018. The Correlation Between Hepatitis B Virus Precore/Core Mutations and the Progression of Severe Liver Disease. Front Cell Infect Microbiol, 8, 355.

    2. Arzumanyan, A., Reis, H.M.,Feitelson, M.A., 2013. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer, 13, 123-135.

    3. Bonino, F., Brunetto, M.R., Rizzetto, M.,Will, H., 1991. Hepatitis B virus unable to secrete e antigen. Gastroenterology, 100, 1138-1141.

    4. Chen, C.J., Yang, H.I., Iloeje, U.H.,Group, R.-H.S., 2009. Hepatitis B virus DNA levels and outcomes in chronic hepatitis B. Hepatology, 49, S72-S84.

    5. Chen, J., Jin, R., Zhao, J., Liu, J., Ying, H., Yan, H., Zhou, S., Liang, Y., Huang, D., Liang, X., Yu, H., Lin, H.,Cai, X., 2015. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett, 367, 1-11.

    6. Chotiyaputta, W.,Lok, A.S., 2009. Hepatitis B virus variants. Nat Rev Gastroenterol Hepatol, 6, 453-462.

    7. Chuai, X., Wang, W., Chen, H., Deng, Y., Wen, B.,Tan, W., 2014. Lentiviral backbone-based hepatitis B virus replicon-mediated transfer favours the establishment of persistent hepatitis B virus infection in mice after hydrodynamic injection. Antiviral Res, 101, 68-74.

    8. Deng, T.,Karin, M., 1994. c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature, 371, 171-175.

    9. Dimri, M.,Satyanarayana, A., 2020. Molecular Signaling Pathways and Therapeutic Targets in Hepatocellular Carcinoma. Cancers (Basel), 12.

    10. Fan, G., Wei, X.,Xu, X., 2020. Is the era of sorafenib over? A review of the literature. Ther Adv Med Oncol, 12, 1758835920927602.

    11. Girones, R.,Miller, R.H., 1989. Mutation rate of the hepadnavirus genome. Virology, 170, 595-597.

    12. Guo, Y.J., Pan, W.W., Liu, S.B., Shen, Z.F., Xu, Y.,Hu, L.L., 2020. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med, 19, 1997-2007.

    13. He, B., Guo, L., Hu, Y., Huang, H., Wan, L., Xu, K., Wang, F.,Wen, Z., 2022. Desmocollin-2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma via the ERK/c-MYC signaling pathway. Aging (Albany NY), 14, 8805-8817.

    14. Huang, A., Yang, X.R., Chung, W.Y., Dennison, A.R.,Zhou, J., 2020. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther, 5, 146.

    15. Ito, Y., Sasaki, Y., Horimoto, M., Wada, S., Tanaka, Y., Kasahara, A., Ueki, T., Hirano, T., Yamamoto, H., Fujimoto, J., Okamoto, E., Hayashi, N.,Hori, M., 1998. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology, 27, 951-958.

    16. Jeong, H., Cho, M.H., Park, S.G.,Jung, G., 2014. Interaction between nucleophosmin and HBV core protein increases HBV capsid assembly. FEBS Lett, 588, 851-858.

    17. Jiang, Z.,Dai, C., 2023. Potential Treatment Strategies for Hepatocellular Carcinoma Cell Sensitization to Sorafenib. J Hepatocell Carcinoma, 10, 257-266.

    18. Kim, H., Lee, S.A., Do, S.Y.,Kim, B.J., 2016. Precore/core region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol, 22, 4287-4296.

    19. Kubo, S., Takemura, S., Tanaka, S., Shinkawa, H., Nishioka, T., Nozawa, A., Kinoshita, M., Hamano, G., Ito, T.,Urata, Y., 2015. Management of hepatitis B virus infection during treatment for hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol, 21, 8249-8255.

    20. Kumar, R., 2022. Review on hepatitis B virus precore/core promoter mutations and their correlation with genotypes and liver disease severity. World J Hepatol, 14, 708-718.

    21. Lee, H., Kim, H., Lee, S.A., Won, Y.S., Kim, H.I., Inn, K.S.,Kim, B.J., 2015. Upregulation of endoplasmic reticulum stress and reactive oxygen species by naturally occurring mutations in hepatitis B virus core antigen. J Gen Virol, 96, 1850-1854.

    22. Lefeuvre, C., Le Guillou-Guillemette, H.,Ducancelle, A., 2021. A Pleiotropic Role of the Hepatitis B Virus Core Protein in Hepatocarcinogenesis. Int J Mol Sci, 22.

    23. Li, M., Zhou, Z.H., Sun, X.H., Zhang, X., Zhu, X.J., Jin, S.G., Gao, Y.T., Jiang, Y.,Gao, Y.Q., 2016. Hepatitis B core antigen upregulates B7-H1 on dendritic cells by activating the AKT/ERK/P38 pathway:a possible mechanism of hepatitis B virus persistence. Lab Invest, 96, 1156-1164.

    24. Liao, Y., Hu, X., Chen, J., Cai, B., Tang, J., Ying, B., Wang, H.,Wang, L., 2012. Precore mutation of hepatitis B virus may contribute to hepatocellular carcinoma risk:evidence from an updated meta-analysis. PLoS One, 7, e38394.

    25. Liu, T, Liu, A, Liu, Y, Cen, S, Zhang, Q, 2022. In vitro investigation of hbv clinical isolates from chinese patients reveals that genotype c isolates possess higher infectivity than genotype b isolates. Virol Sin 37, 398-407.

    26. Llovet, J.M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.F., De Oliveira, A.C., Santoro, A., Raoul, J.L., Forner, A., Schwartz, M., Porta, C., Zeuzem, S., Bolondi, L., Greten, T.F., Galle, P.R., Seitz, J.F., Borbath, I., Haussinger, D., Giannaris, T., Shan, M., Moscovici, M., Voliotis, D., Bruix, J.,Group, S.I.S., 2008. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 359, 378-390.

    27. Lok, A.S., Akarca, U.S.,Greene, S., 1995. Predictive value of precore hepatitis B virus mutations in spontaneous and interferon-induced hepatitis B e antigen clearance. Hepatology, 21, 19-24.

    28. Meyer, T., Fox, R., Ma, Y.T., Ross, P.J., James, M.W., Sturgess, R., Stubbs, C., Stocken, D.D., Wall, L., Watkinson, A., Hacking, N., Evans, T.R.J., Collins, P., Hubner, R.A., Cunningham, D., Primrose, J.N., Johnson, P.J.,Palmer, D.H., 2017. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2):a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol, 2, 565-575.

    29. Moon, H.,Ro, S.W., 2021. MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers (Basel), 13.

    30. Nguyen, D.H., Ludgate, L.,Hu, J., 2008. Hepatitis B virus-cell interactions and pathogenesis. J Cell Physiol, 216, 289-294.

    31. Quarleri, J., 2014. Core promoter:a critical region where the hepatitis B virus makes decisions. World J Gastroenterol, 20, 425-435.

    32. Rimassa, L., Finn, R.S.,Sangro, B., 2023. Combination immunotherapy for hepatocellular carcinoma. J Hepatol, 10.1016/j.jhep.2023.03.003.

    33. Samal, J., Kandpal, M.,Vivekanandan, P., 2015. Hepatitis B "e" antigen-mediated inhibition of HBV replication fitness and transcription efficiency in vitro. Virology, 484, 234-240.

    34. Seeger, C.,Mason, W.S., 2000. Hepatitis B virus biology. Microbiol Mol Biol Rev, 64, 51-68.

    35. Sivasudhan, E., Blake, N., Lu, Z., Meng, J.,Rong, R., 2022. Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma:A Comprehensive Review. Cells, 11.

    36. Suppiah, J., Mohd Zain, R., Bahari, N., Haji Nawi, S.,Saat, Z., 2015. G1896A Precore Mutation and Association With HBeAg Status, Genotype and Clinical Status in Patients With Chronic Hepatitis B. Hepat Mon, 15, e31490.

    37. Tang, L.S.Y., Covert, E., Wilson, E.,Kottilil, S., 2018. Chronic Hepatitis B Infection:A Review. JAMA, 319, 1802-1813.

    38. Tang, W., Chen, Z., Zhang, W., Cheng, Y., Zhang, B., Wu, F., Wang, Q., Wang, S., Rong, D., Reiter, F.P., De Toni, E.N.,Wang, X., 2020. The mechanisms of sorafenib resistance in hepatocellular carcinoma:theoretical basis and therapeutic aspects. Signal Transduct Target Ther, 5, 87.

    39. Tian, Y., Kuo, C.F., Akbari, O.,Ou, J.H., 2016. Maternal-Derived Hepatitis B Virus e Antigen Alters Macrophage Function in Offspring to Drive Viral Persistence after Vertical Transmission. Immunity, 44, 1204-1214.

    40. Tong, S., Kim, K.H., Chante, C., Wands, J.,Li, J., 2005. Hepatitis B Virus e Antigen Variants. Int J Med Sci, 2, 2-7.

    41. Wilhelm, S.M., Carter, C., Tang, L., Wilkie, D., Mcnabola, A., Rong, H., Chen, C., Zhang, X., Vincent, P., Mchugh, M., Cao, Y., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L.E., Bollag, G.,Trail, P.A., 2004. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 64, 7099-7109.

    42. Xia, L., Tian, D., Huang, W., Zhu, H., Wang, J., Zhang, Y., Hu, H., Nie, Y., Fan, D.,Wu, K., 2012. Upregulation of IL-23 expression in patients with chronic hepatitis B is mediated by the HBx/ERK/NF-kappaB pathway. J Immunol, 188, 753-764.

    43. Xie, Y., Liu, S., Zhao, Y., Zhang, L., Zhao, Y., Liu, B.,Guo, Z., 2015. Precore/Core Region Mutations in Hepatitis B Virus DNA Predict Postoperative Survival in Hepatocellular Carcinoma. PLoS One, 10, e0133393.

    44. Xing, J., Ginty, D.D.,Greenberg, M.E., 1996. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science, 273, 959-963.

    45. Yardeni, D., Chang, K.M.,Ghany, M.G., 2023. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology, 164, 42-60 e46.

    46. Zhang, C., Gao, Y., Du, C., Markowitz, G.J., Fu, J., Zhang, Z., Liu, C., Qin, W., Wang, H., Wang, F.,Yang, P., 2021. Hepatitis B-Induced IL8 Promotes Hepatocellular Carcinoma Venous Metastasis and Intrahepatic Treg Accumulation. Cancer Res, 81, 2386-2398.

    47. Zhang, Y., Tan, Y., Liu, S., Yin, H., Duan, J., Fan, L., Zhao, X.,Jiang, B., 2023. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol Mech Methods, 33, 47-55.

    48. Zhao, Y., Jian, W., Gao, W., Zheng, Y.X., Wang, Y.K., Zhou, Z.Q., Zhang, H.,Wang, C.J., 2013. RNAi silencing of c-Myc inhibits cell migration, invasion, and proliferation in HepG2 human hepatocellular carcinoma cell line:c-Myc silencing in hepatocellular carcinoma cell. Cancer Cell Int, 13, 23.

    49. Zhu, P., Li, Y., Li, P., Zhang, Y.,Wang, X., 2019. c-Myc induced the regulation of long non-coding RNA RHPN1-AS1 on breast cancer cell proliferation via inhibiting P53. Mol Genet Genomics, 294, 1219-1229.

    50. Zuo, Z., Liu, J., Sun, Z., Cheng, Y.W., Ewing, M., Bugge, T.H., Finkel, T., Leppla, S.H.,Liu, S., 2023. ERK and c-Myc signaling in host-derived tumor endothelial cells is essential for solid tumor growth. Proc Natl Acad Sci U S A, 120, e2211927120.

  • 加载中

Article Metrics

Article views(1787) PDF downloads(31) Cited by()

Related
Proportional views

    HBV precore G1896A mutation promotes growth of hepatocellular carcinoma cells by activating ERK/MAPK pathway

      Corresponding author: Zhanjun Guo, zjguo5886@aliyun.com
      Corresponding author: Xia Chuai, chuaixia@wh.iov.cn
      Corresponding author: Sandra Chiu, qiux@ustc.edu.cn
    • a. Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China;
    • b. Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China;
    • c. Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China;
    • d. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, 430207, China;
    • e. Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China

    Abstract: Chronic hepatitis B virus (HBV) infection is one of the leading causes of hepatocellular carcinoma (HCC). The HBV genome is prone to mutate and several variants are closely related to the malignant transformation of liver disease. G1896A mutation (G to A mutation at nucleotide 1896) is one of the most frequently observed mutations in the precore region of HBV, which prevents HBeAg expression and is strongly associated with HCC. However, the mechanisms by which this mutation causes HCC are unclear. Here, we explored the function and molecular mechanisms of the G1896A mutation during HBV-associated HCC. G1896A mutation remarkably enhanced the HBV replication in vitro. Moreover, it increased tumor formation and inhibited apoptosis of hepatoma cells, and decreased the sensitivity of HCC to sorafenib. Mechanistically, the G1896A mutation could activate ERK/MAPK pathway to enhanced sorafenib resistance in HCC cells and augmented cell survival and growth. Collectively, our study demonstrates for the first time that the G1896A mutation has a dual regulatory role in exacerbating HCC severity and sheds some light on the treatment of G1896A mutation-associated HCC patients.

    Reference (50) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return