-
Abudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S.V., Avšič-Županc, T., Ballinger, M.J., Bente, D.A., Beer, M., Bergeron, É., Blair, C.D., Briese, T., Buchmeier, M.J., Burt, F.J., Calisher, C.H., Cháng, C., Charrel, R.N., Choi, I.R., Clegg, J.C.S., De La Torre, J.C., De Lamballerie, X., Dèng, F., Di Serio, F., Digiaro, M., Drebot, M.A., Duàn, X., Ebihara, H., Elbeaino, T., Ergünay, K., Fulhorst, C.F., Garrison, A.R., Gāo, G.F., Gonzalez, J.J., Groschup, M.H., Günther, S., Haenni, A.L., Hall, R.A., Hepojoki, J., Hewson, R., Hú, Z., Hughes, H.R., Jonson, M.G., Junglen, S., Klempa, B., Klingström, J., Kòu, C., Laenen, L., Lambert, A.J., Langevin, S.A., Liu, D., Lukashevich, I.S., Luò, T., Lǚ, C., Maes, P., De Souza, W.M., Marklewitz, M., Martelli, G.P., Matsuno, K., Mielke-Ehret, N., Minutolo, M., Mirazimi, A., Moming, A., Mühlbach, H.P., Naidu, R., Navarro, B., Nunes, M.R.T., Palacios, G., Papa, A., Pauvolid-Corrêa, A., Pawęska, J.T., Qiáo, J., Radoshitzky, S.R., Resende, R.O., Romanowski, V., Sall, A.A., Salvato, M.S., Sasaya, T., Shěn, S., Shí, X., Shirako, Y., Simmonds, P., Sironi, M., Song, J.W., Spengler, J.R., Stenglein, M.D., Sū, Z., Sūn, S., Táng, S., Turina, M., Wáng, B., Wáng, C., Wáng, H., Wáng, J., Wèi, T., Whitfield, A.E., Zerbini, F.M., Zhāng, J., Zhāng, L., Zhāng, Y., Zhang, Y.Z., Zhāng, Y., Zhou, X., Zhū, L.,Kuhn, J.H., 2019. Taxonomy of the order Bunyavirales: update 2019. Arch Virol, 164, 1949-1965.
-
Albornoz, A., Hoffmann, A.B., Lozach, P.Y.,Tischler, N.D., 2016. Early Bunyavirus-Host Cell Interactions. Viruses, 8.
-
Basta, S., Stoessel, R., Basler, M., Van Den Broek, M.,Groettrup, M., 2005. Cross-presentation of the long-lived lymphocytic chori-omeningitis virus nucleoprotein does not require neosynthesis and is enhanced via heat shock proteins. J Immunol, 175, 796-805.
-
Burch, A.D.,Weller, S.K., 2005. Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol, 79, 10740-10749.
-
Chen, B., Piel, W.H., Gui, L., Bruford, E.,Monteiro, A., 2005. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics, 86, 627-637.
-
Chen, W., Sin, S.H., Wen, K.W., Damania, B.,Dittmer, D.P., 2012. Hsp90 inhibitors are efficacious against Kaposi Sarcoma by en-hancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathog, 8, e1003048.
-
Choi, Y., Park, S.J., Sun, Y., Yoo, J.S., Pudupakam, R.S., Foo, S.S., Shin, W.J., Chen, S.B., Tsichlis, P.N., Lee, W.J., Lee, J.S., Li, W., Brennan, B., Choi, Y.K.,Jung, J.U., 2019. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nat Microbiol, 4, 429-437.
-
Gao, L.,Harhaj, E.W., 2013. HSP90 protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-kappaB activation and HTLV-1 replication. J Virol, 87, 13640-13654.
-
Gu, X.L., Su, W.Q., Zhou, C.M., Fang, L.Z., Zhu, K., Ma, D.Q., Jiang, F.C., Li, Z.M., Li, D., Duan, S.H., Peng, Q.M., Wang, R., Jiang, Y., Han, H.J.,Yu, X.J., 2022. SFTSV infection in rodents and their ectoparasitic chiggers. PLoS Negl Trop Dis, 16, e0010698.
-
Hong, Y., Bai, M., Qi, X., Li, C., Liang, M., Li, D., Cardona, C.J.,Xing, Z., 2019. Suppression of the IFN-α and -β Induction through Sequestering IRF7 into Viral Inclusion Bodies by Nonstructural Protein NSs in Severe Fever with Thrombocytopenia Syn-drome Bunyavirus Infection. J Immunol, 202, 841-856.
-
Hoter, A., El-Sabban, M.E.,Naim, H.Y., 2018. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci, 19.
-
Khalil, J., Kato, H.,Fujita, T., 2021. The Role of Non-Structural Protein NSs in the Pathogenesis of Severe Fever with Thrombocytopenia Syndrome. Viruses, 13.
-
Kitagawa, Y., Sakai, M., Shimojima, M., Saijo, M., Itoh, M.,Gotoh, B., 2018. Nonstructural protein of severe fever with thrombocy-topenia syndrome phlebovirus targets STAT2 and not STAT1 to inhibit type I interferon-stimulated JAK-STAT signaling. Microbes Infect, 20, 360-368.
-
Kramer, G., Boehringer, D., Ban, N.,Bukau, B., 2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol, 16, 589-597.
-
Lam, T.T., Liu, W., Bowden, T.A., Cui, N., Zhuang, L., Liu, K., Zhang, Y.Y., Cao, W.C.,Pybus, O.G., 2013. Evolutionary and molec-ular analysis of the emergent severe fever with thrombocytopenia syndrome virus. Epidemics, 5, 1-10.
-
Liu, Y., Li, Q., Hu, W., Wu, J., Wang, Y., Mei, L., Walker, D.H., Ren, J., Wang, Y.,Yu, X.J., 2012. Person-to-person transmission of severe fever with thrombocytopenia syndrome virus. Vector Borne Zoonotic Dis, 12, 156-160.
-
Min, Y.Q., Ning, Y.J., Wang, H.,Deng, F., 2020. A RIG-I-like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. J Biol Chem, 295, 9691-9711.
-
Naito, T., Momose, F., Kawaguchi, A.,Nagata, K., 2007. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol, 81, 1339-1349.
-
Ning, Y.J., Feng, K., Min, Y.Q., Cao, W.C., Wang, M., Deng, F., Hu, Z.,Wang, H., 2015. Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies. J Virol, 89, 4227-4236.
-
Qu, B., Qi, X., Wu, X., Liang, M., Li, C., Cardona, C.J., Xu, W., Tang, F., Li, Z., Wu, B., Powell, K., Wegner, M., Li, D.,Xing, Z., 2012. Suppression of the interferon and NF-kappaB responses by severe fever with thrombocytopenia syndrome virus. J Virol, 86, 8388-8401.
-
Reyes-Del Valle, J., Chávez-Salinas, S., Medina, F.,Del Angel, R.M., 2005. Heat shock protein 90 and heat shock protein 70 are com-ponents of dengue virus receptor complex in human cells. J Virol, 79, 4557-4567.
-
Rochlin, I., Benach, J.L., Furie, M.B., Thanassi, D.G.,Kim, H.K., 2022. Rapid invasion and expansion of the Asian longhorned tick (Haemaphysalis longicornis) into a new area on Long Island, New York, USA. Ticks Tick Borne Dis, 14, 102088.
-
Solit, D.B.,Chiosis, G., 2008. Development and application of Hsp90 inhibitors. Drug Discov Today, 13, 38-43.
-
Song, P., Zheng, N., Liu, Y., Tian, C., Wu, X., Ma, X., Chen, D., Zou, X., Wang, G., Wang, H., Zhang, Y., Lu, S., Wu, C.,Wu, Z., 2018. Deficient humoral responses and disrupted B-cell immunity are associated with fatal SFTSV infection. Nat Commun, 9, 3328.
-
Sun, Q., Qi, X., Zhang, Y., Wu, X., Liang, M., Li, C., Li, D., Cardona, C.J.,Xing, Z., 2016. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs. J Biol Chem, 291, 16138-16149.
-
Sun, X., Barlow, E.A., Ma, S., Hagemeier, S.R., Duellman, S.J., Burgess, R.R., Tellam, J., Khanna, R.,Kenney, S.C., 2010. Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad Sci U S A, 107, 3146-3151.
-
Sun, X., Bristol, J.A., Iwahori, S., Hagemeier, S.R., Meng, Q., Barlow, E.A., Fingeroth, J.D., Tarakanova, V.L., Kalejta, R.F.,Kenney, S.C., 2013. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol, 87, 10126-10138.
-
Tsou, Y.L., Lin, Y.W., Chang, H.W., Lin, H.Y., Shao, H.Y., Yu, S.L., Liu, C.C., Chitra, E., Sia, C.,Chow, Y.H., 2013. Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy. PLoS One, 8, e77133.
-
Tufts, D.M., Goodman, L.B., Benedict, M.C., Davis, A.D., Vanacker, M.C.,Diuk-Wasser, M., 2021. Association of the invasive Haemaphysalis longicornis tick with vertebrate hosts, other native tick vectors, and tick-borne pathogens in New York City, USA. Int J Parasitol, 51, 149-157.
-
Wang, Y., Jin, F., Wang, R., Li, F., Wu, Y., Kitazato, K.,Wang, Y., 2017. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol, 162, 3269-3282.
-
Wu, X., Qi, X., Liang, M., Li, C., Cardona, C.J., Li, D.,Xing, Z., 2014a. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. Faseb j, 28, 2504-2516.
-
Wu, X., Qi, X., Qu, B., Zhang, Z., Liang, M., Li, C., Cardona, C.J., Li, D.,Xing, Z., 2014b. Evasion of antiviral immunity through sequestering of TBK1/IKKε/IRF3 into viral inclusion bodies. J Virol, 88, 3067-3076.
-
Yang, K., Shi, H., Qi, R., Sun, S., Tang, Y., Zhang, B.,Wang, C., 2006. Hsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells. Mol Biol Cell, 17, 1461-1471.
-
Yoshikawa, R., Sakabe, S., Urata, S.,Yasuda, J., 2019. Species-Specific Pathogenicity of Severe Fever with Thrombocytopenia Syn-drome Virus Is Determined by Anti-STAT2 Activity of NSs. J Virol, 93.
-
Yu, X.J., Liang, M.F., Zhang, S.Y., Liu, Y., Li, J.D., Sun, Y.L., Zhang, L., Zhang, Q.F., Popov, V.L., Li, C., Qu, J., Li, Q., Zhang, Y.P., Hai, R., Wu, W., Wang, Q., Zhan, F.X., Wang, X.J., Kan, B., Wang, S.W., Wan, K.L., Jing, H.Q., Lu, J.X., Yin, W.W., Zhou, H., Guan, X.H., Liu, J.F., Bi, Z.Q., Liu, G.H., Ren, J., Wang, H., Zhao, Z., Song, J.D., He, J.R., Wan, T., Zhang, J.S., Fu, X.P., Sun, L.N., Dong, X.P., Feng, Z.J., Yang, W.Z., Hong, T., Zhang, Y., Walker, D.H., Wang, Y.,Li, D.X., 2011. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med, 364, 1523-1532.
-
Zhang, J., Li, H., Liu, Y., Zhao, K., Wei, S., Sugarman, E.T., Liu, L.,Zhang, G., 2022. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells, 11.
-
Zhang, L.K., Wang, B., Xin, Q., Shang, W., Shen, S., Xiao, G., Deng, F., Wang, H., Hu, Z.,Wang, M., 2019. Quantitative Proteomic Analysis Reveals Unfolded-Protein Response Involved in Severe Fever with Thrombocytopenia Syndrome Virus Infection. J Virol, 93.